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Preface

All kind of information from distant celestial bodies comes to us in the form

of electromagnetic radiation. In most cases the propagation of this radiation

can be described, as a reasonable approximation, in terms of rays. This is

true not only in the optical range but also in the radio range of the electro-

magnetic spectrum. For this reason the laws of ray optics are of fundamental

importance for astronomy, astrophysics, and cosmology.
According to general relativity, light rays are the light-like geodesics of a

Lorentzian metric by which the spacetime geometry is described. This, how-

ever, is true only as long as the light rays are freely propagating under the

only influence of the gravitational field which is coded in the spacetime ge-

ometry. If a light ray is influenced, in addition, by an optical medium (e.g.,
by a plasma), then it will not follow a light-like geodesic of the spacetime
metric. It is true that for electromagnetic radiation traveling through the

universe usually the influence of a medium on the path of the ray and on

the frequency is small. However, there are several cases in which this influ-

ence is very well measurable, in particular in the radio range. For example,
the deflection of radio rays in the gravitational field of the Sun is consider-

ably influenced by the Solar corona. Moreover, current and planned Doppler

experiments with microwaves in the Solar system reach an accuracy in the

frequency of Awlw 5--- 10-15 which makes it necessary to take the influence

of the interplanetary medium into account. Finally, even in cases where the

quantitative influence of the medium is negligibly small it is interesting to

ask in which way the qualitative aspectsof the theory are influenced by the

medium. The latter remark applies, in particular, to the intriguing theory of

gravitational lensing.

Unfortunately, general-relativistic light propagation in media is not usu-

ally treated in standard textbooks, and the more specialized literature is

concentrated on particular types of media and on particular applications
rather than on general methodology. In this sense a comprehensive review of

general-relativistic ray optics in media would fill a gap in the literature. It is

the purpose of this monograph to provide such a review.

Actually, this monograph grew out of a more special idea. It was my orig-
inal plan to write a review on variational principles for light rays in general
relativistic media, and to give some applications to astronomy and astro-



V1 Preface

physics, in particular to the theory of gravitational lensing. However, I soon

realized the necessity of precisely formulating the mathematical theory of

light rays in general before I could tackle the question of whether these light

rays are characterized by a variational principle. The sections on variational

principles and on applications are now at the end of Part II, in which a gen-

eral mathematical ftamework for ray optics is set up. This is written in the

language of symplectic geometry, thereby elucidating the well-known analogy
between ray optics and the phase-space formulation of classical mechanics.

Moreover, I found it desirable to also treat the question of how to derive

ray optics as an approximation scheme from Maxwell's equations. This is

the topic of Part I which serves the purpose of physically motivating the

fundamental definitions of Part II. In vacuo, the passage from Maxwell's

equations to ray optics is, of course, an elementary textbook matter and the

generalization to isotropic and non-dispersive media is quite straightforward.

However, for anisotropic and/or dispersive media this passage is more subtle.

In Part I two types of media are discussed in detail, viz., an anisotropic one

and a dispersive one, and the emphasis is on general methodology.

I have organized the material in such a way that it should be possible to

read Part II without having read Part I. This is not recommended, of course,

but the reader might wish to do so. Both parts begin with an introductory

section containing a brief guide to the literature and a statement of assump-

tions and notations used throughout. Whenever the reader feels that a symbol

needs explanation or that the underlying assumptions are not clearly stated,

he or she should consult the introductory section of the respective part. Also,

the index might be of help if problems of that kind occur.

Large parts of this monograph present material which, in essence, is not

new. However, I hope that the formulation chosen here might give some new

insight. As to Part I, our discussion of the passage from Maxwell's equations

to ray optics includes several mathematical details which are difficult to find

in the literature, although the general features are certainly known to experts.

To mention just one example, it is certainly known to experts that in a linear

but anisotropic medium on a general-relativistic spacetime the light rays axe

determined by two "optical Finsler metrics"; to the best of my knowledge,

however, a full proof of this fact is given here for the first time. As to Part II,

the basic formalism is just the 170-year-old Hamiltonian optics, rewritten in

modern mathematical terminology and adapted to the framework of general

relativity. However, the presentation is based on some general mathematical

definitions which have not been used before. This remark applies, in partic-

ular, to Definition 5.1.1, which is the definition of what I call "ray-optical

structures". This definition formalizes the widely accepted idea that all of

ray optics can be derived from a "dispersion relation". (The term "ray sys-

tem" is sometimes used by Vladimir Arnold and his collaborators in a similar

though not quite identical sense.) It also applies, e.g., to Definition 5.4.1, on
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"dilation-invariant" ray optical structures, which characterizes dispersion-free
media in a geometric way.

On the other hand, I want to direct the reader's attention to the fact that

this monograph contains some particular results which, as far as I know, have

not been known before. These include, e.g.:

 the general redshift formula for light rays in media on a general-relativistic

spacetime in Sect. 6.2;
 the results on light bundles in  isotropic non-dispersive media on a general-

relativistic spacetime in Sect. 6.4, in particular the generalized "reciprocity
theorem ' (Theorem 6.4.3);
Theorem 7.3.1, which can be viewed as a version of Fermat's principle
for light rays in (possibly anisotropic and dispersive) media on general-
relativistic spacetimes;
Theorem 7.5.4, which generalizes the "Morse index theorem" of Rieman-

nian geometry to the case of light rays in stationary media on stationary

general-relativistic spacetimes.

Some of the questions raised in this monograph remain unanswered, i.e., to

some extent this is an interim report on work in progress. In particular, this

remark applies to the following two special issues. (a) In Part I we are able to

prove that for the linear medium treated in Chap. 2 ray optics is associated

with approximate solutions of Maxwell's equations, i.e., that ray optics gives

a viable approximation scheme for electromagnetic radiation. Unfortunately,

we are not able to prove a similar result for the plasma model of Chap. 3.

This is a gap which should be filled in the future. (b) In Part II we are

able to establish a Morse index theorem for light rays in stationary media.

However, it is still an open question whether these results can be generalized
to the non-stationary case in which, up to now, a Morse theory exists only

for vacuum rays. With Fermat's principle in the form of Theorem 7.3.1 we

have a starting point for setting up a Morse theory for light rays in arbitrary

(non-stationary) media. This is an interesting problem to be tackled in future

work.

This monograph in its present form is a slightly revised version of my Ha-

bilitation thesis. I would like to use this opportunity to thank the members of

the Habilitation Committee, Karl-Eberhard Hellwig, Erwin Sedlmayr, Bernd

Wegner, John Beem, Friedrich Wilhelm Hehl, and Gernot Neugebauer, for

their interest in this work and for several useful comments. In particular, I

would like to thank Bernd Wegner for paving the way to having this text

published with Springer Verlag.
While working at this monograph I have profited from many discussions,

in particular with my academic teacher Karl-Eberhard Hellwig and his collab-

orators at the Technical University in Berlin, but also with other colleagues.

Special thanks are due to Wolfgang Hasse and Marcus Kriele for collabora,

tion on various aspects of light propagation in general relativity; to Wolfgang
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Rindler for hospitality at the University of Texas at Dallas and for discus-

sions on the fundamentals of general relativity; to John Beem for hospitality
at the University of Missouri at Columbia and for discussions on Lorentzian

geometry; to Gernot Neugebauer and his collaborators for hospitality at the

University of Jena and for discussions on various aspects of general relativity;
to Paolo Piccione, Fabio Giannoni, and Antonio Masiello for hospitality dur-

ing several visits to Italy and to Brazil and for collaboration on Morse theory;
and to Jfirgen Ehlers and Arlie Petters for fruitful discussions on Fermat's

principle and gravitational lensing. Also, I have enjoyed discussions on this

subject with students during seminars and classes in Berlin, 0snabrfick, and

S5,o Paulo.

Finally, I am grateful to the Deutsche Forschungsgemeinschaft for spon-

soring this work with a Habilitation stipend, and to the Wigner Foundation,
to the Deutscher Akademischer Austauschdienst, and to the FundagRo de

Amparo, 6 Pesquisa do Estado de Sdo Paulo for financially supporting my
visits to Dallas, Columbia, and Sdo Paulo.

Berlin, August 1999 Volker Perlick
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1. Introduction to Part I

In Part I we recapitulate the general ideas of how to derive the laws of

ray optics from Maxwell's equations. We presuppose a general-relativistic
spacetime as background, and we consider media which are general enough
to elucidate all relevant features of the method. Chapter 2 treats the case of

a linear (not necessarily isotropic) dielectric and permeable medium in full

detail. Chapter 3 discusses dispersive media in general and a simple plasma
model in particular. In this way the material presented in Part I serves two

purposes. First, it motivates our mathematical frame-work for ray optics, to

be set up in Part II below. Second, it provides us with physically important

examples of ray optical structures to which we shall recur frequently.

1.1 A brief guide to the literature

In Part I we have to assume some familiarity on the reader's side with

Maxwell's equations in matter on a general-relativistic spacetime. Whereas

vacuum Maxwell's equations are detailed in any textbook on general relativ-

ity, the matter case is not usually treated in extenso. For general aspects of

the phenomenology of electromagnetic media in general relativity we refer

to Bressan [171 who gives many earlier references. The case of a linear (not
necessarily isotropic) dielectric

and permeable medium which is at the basis of Chap. 2 is briefly treated

by Schmutzer [127], Chap. IV, following an original article by Marx [91].
The general-relativistic plasma model which is at the basis of Chap. 3 is

systematically treated in two articles by Breuer and Ehlers [18] [19]; for earlier

work on the same subject we refer to Madore [90], to Bi66k and Hadrava [14],
and to Anile and Pantano [51 [6].

As an aside it should be mentioned that the phenomenological theory
of electromagnetic media can be derived from electron theory by statisti-

cal methods, i.e., that the macroscopic (phenomenological) Maxwell equa,

tions can be derived from a sort of microscopic Maxwell equations. For linear

isotropic media in inertial motion on flat spacetime this is a standard text-

book matter; the generalization to accelerated media is due to Kaufmann [67).
For a general-relativistic plasma, the derivation of phenomenological proper-

ute
V. Perlick: LNPm 61, pp. 3 - 6, 2000
© Springer-Verlag Berlin Heidelberg 2000



4 1. Introduction to Part I

ties from the kinetic theory of photons is discussed in the above-mentioned

article by Bi&ik and Hadrava [14].
The main topic of Part I is the derivation of the laws of ray optics from

Maxwell's equations. The basic idea is to make an approximate-plane-wave
ansatz for the electromagnetic field and to assume that this ansatz satis-

fies Maxwell's equations in an asymptotic sense for high frequencies. This

results in a dynamical law for wave surfaces which can be rewritten equiv-
alently as a dynamical law for rays. In optics the dynamical law for wave

surfaces is usually called the eikonal equation. It is formally analogous to the

Hamilton-Jacobi equation of classical mechanics, whereas the dynamical law

for rays is formally analogous to Hamilton's equations. Mathematically, this

so-called my method is, of course, not restricted to Maxwell's equations but

applies equally well to other partial differential equations with or without

relevance to physics. In this sense, the ray method has applications not only
to optics but also to acoustics and to wave mechanics. In the latter context,
the ray method is known as JWKB method, refering to the pioneering work
of Jeffreys, Wentzel, Kramers and Brioullin, and is detailed in virtually any

textbook on quantum mechanics.

In this brief guide to the literature we shall concentrate on the ray method

in optics. As to other applications we refer to the comprehensive list of refer-

ences given in monographs such as Keller, Lewis and Seckler [70] or Jeffrey
and Kawahara [66]. Purely mathematical aspects of the ray method can be

found in textbooks on partial differential equations. Particularly useful for

our purposes axe, e.g., the books by Chazarain and Piriou [26] and by Egorov
and Shubin [36].

Whereas rudiments of the ray method can be traced back to work of Li-

ouville and Green around 1830, it was first carried through in the context

of optics by Sommerfeld and Runge [1321 in the year 1911, following a sug-

gestion by Debye. The work of Sommerfeld and Runge was restricted to the

vacuum Maxwell equations in an inertial system, and the only goal was to

derive the corresponding eikonal equation. Their treatment was generalized
and systematized by Luneburg [881 who considered infinite asymptotic series

solutions rather than just asymptotic solutions of lowest order as Sommer-

feld and Runge did. Later, the method was extended from the vacuum case

to the case of light propagation in matter. This was a very active field of

reaseaxch in the 1960s, see, e.g., Lewis [84], Chen [27] and Kravtsov [75]. All

these papers are restricted to special relativity in the sense that they are

presupposing a flat spacetime. Nonetheless, the techniques used are of inter-

est also in view of general relativity. The reason is that vacuum Maxwell's

equations on a general-relativistic spacetime are very similar to Maxwell's

equations in an inhomogeneous medium on flat spacetime, at least locally.
This was first observed by Plebafiski [120]. Note, however, that global as-

pects which do not carry over to general relativity are brought into play
whenever temporal Fourier expansions (as e.g. by Lewis [841) and/or spatial
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Fourier expansions (as e.g. by Chen [271) are used. A global treatment of the

ray method that does carry over to general relativity is possible in terms of

the Lagrangian manifold techniques introduced in the 1960s by Maslov and

Arnold, see Arnold [71, Maslov [94], Duistermaat [311 or Guillemin and Stern-

berg (55]. In Part I we are concerned with local questions only. However, we

shall touch upon Lagrangian manifold techniques and their relevance for the

investigation of caustics in Part II below.

In general relativity, the passage from Maxwell's equations to ray optics
was carried through for the first time by Laue [77] in the year 1920. In this

paper, which is the written version of a talk given by Laue at the 86. Natur-

forscherversammlung, the author demonstrated how to derive from vacuum

Maxwell's equations on a curved spacetime the light-like geodesic equation for

the rays. Laue's treatment followed closely the seminal paper by Sommerfeld

and Runge [132]. A more systematic general-relativistic treatment of the ray

method in optics, including asymptotic solutions of arbitrarily high order, was

brought forward much later by Ehlers [381. He considered linear isotropic non-

dispersive media on an arbitrary general-relativistic spacetime and derived

not only the eikonal equation for the rays but also transport equations of arbi-

trary order for the polarization plane along the rays. In particular, his results

put earlier findings about light propagation in such media by Gordon [50]
and Pham Mau Quan [117] on a mathematically firm basis. At least for the

vacuum case, the main results can now be found in many textbooks on gen-

eral relativity, see, e.g., Misner, Thorne and Wheeler [98], Straumann [136],
or Stephani [133). The general-relativistic relevance of higher order terms in

the asymptotic series expansion was discussed by Dwivedi and Kantowski

[321 and by Anile [4]. A general-relativistic treatment of the ray method for

dispersive media, exemplified with a special plasma model, is due to Breuer

and Ehlers [181 [19] who modified and enhanced earlier work by Madore [90],
by Bi66k and Hadrava [14), and by Anile and Pantano [51 [6].

1.2 Assumptions and notations

We assume a general-relativistic spacetime, i.e., a four-dimensional C' man-

ifold with a metric of Lorentzian signature (+, +, +, -). On this spacetime

background we consider Maxwell's equations, using units making the dielec-

tricity and permeability constants of vacuum equal to one, -,, = po = 1.

Thereby, in particular, the vacuum velocity of light is set equal to one. We

restrict ourselves to the C' category in the sense that throughout Part I all

maps and tensor fields are tacitly assumed to be infinitely often differentiable.

We work in local coordinates using standard index notation. Throughout,
Einstein's summation convention is in force with latin indices running from 1

to 4 and with greek indices running from 1 to 3.The (covariant) components

of the spacetime metric will be denoted by gab. As usual, we define gbr by

gab 9
bc
= Jc, where Jc denotes the Kronecker delta, and we use gab (and gbe,

a a
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respectively) to lower (and raise, respectively) indices. With respect to a co-

ordinate system x = (x1,X2,X3,X4), paxtial derivatives '9 will be denoted
-9X"

by 0. for short, whereas V. means covariant derivative with respect to the

Levi-Civita connection of our metric. For the sake of brevity, we shall speak
of "a tensor field Qabc 77 if we mean "a tensor field whose contravariant com-

ponents in a coordinate system are Qabc " etc. Our treatment will be purely
local throughout Part 1. Therefore, the use of local coordinates and index

notation is no restriction whatsoever.



2. Light propagation in linear dielectric

and permeable media

On our spacetime manifold we consider Maxwell's equations in a linear but

not necessarily isotropic medium, i. e., in a medium phenomenologically char-

acterized by a dielectricity tensor field and a permeability tensor field. It is

our goal to derive and to discuss the laws of ray optics in such a medium.

The standard textbook problem of light propagation in vacuo is, of course,

included as a special case.

The results of this chapter cover a wide range of applications including

light propagation in gases (isotropic case) and crystals (anisotropic case)
as long as dispersion is ignored. For dispersive media we refer to Chap. 3

below. In view of applications to astrophysics, the isotropic case is more

interesting than the (much more complicated) anisotropic case. On the other

hand, a thorough treatment of the anisotropic case is highly instructive from

a methodological point of view. In particular, it gives us the opportunity to

discuss the phenomenon of birefringence.

2.1 Maxwell's equations in linear dielectric

and permeable media

On our spacetime manifold, the source-free Maxwell equations for (macro-
scopic) electromagnetic fields in matter can be written in local coordinates

as

77
abcd

VbFcd = 0 and VbGbe = 0 (2.1)

or, using partial rather than covariant derivatives, as

77
abcd

i9bFcd = 0 and 77abcd 19b(?7cde_f Gef) = 0 (2.2)

In (2.1) and (2.2), 77abcd denotes the totally antisymmetric Levi-Civita tensor

field (volume form) of our metric which is defined by the equation

771234 = ,,/_jd_et(9cd)I - (2.3)

Here the plus sign is valid if the coordinate system is right-handed and the

minus sign is valid if it is left-handed. In other words, we have to choose an

ute
V. Perlick: LNPm 61, pp. 7 - 41, 2000
© Springer-Verlag Berlin Heidelberg 2000



8 2. Light propagation in linear dielectric and permeable media

orientation on the domain of our coordinate system to fix the sign ambiguity
of the Levi-Civita tensor field. However, this is irrelevant since Maxwell's

equations axe invariant under 77abcd 1  -?7abcd7 and so are all the relevant

results in Part I. If the reader is not familiar with volume elements he or she

may consult, e.g., Wald [1461, p. 432.

Fab and Gab denote the electromagnetic field strength and the electromag-
netic excitation, respectively, both of which are antisymmetric second rank

tensor fields. With respect to a reference system, given in terms of a time-like

vector field Ua with Ua U., = -1, we can introduce the electric field strength

Ea = Fab Ub (2.4)

and the magnetic field strength

Ba 77abcd Ub Fcd (2.5)2

such that

Fab = _,7cdabBcUd+EbUa-EaUb (2.6)

Here we have used the familiar property

,,aefk . _je jf jk _ je jf jk _ je jf jk
77abcd b c d C d b d b c+

je jf jk + je jf jk + je jf jk (2.7)d c b C b d b d c

of the Levi-Civita tensor field, cf., e.g., Wald [146], equation (B.2.12).
Similarly, we introduce the electric excitation

Da = Gab Ub (2.8)

and the magnetic excitation

Ha 77abcd Ub Gcd (2.9)
2

such that

Gab = _,,cdab Hc Ud + Db Ua - Da Ub - (2.10)

With respect to the reference system used for their definitions, the electric

and magnetic field -strengths are purely spatial one-forms, and so are the

electric and magnetic excitations,

EaUa=B,,Ua=O and Da Ua = H
a
Ua = 0. (2.11)

Our terminology of calling Ea and Ba the "field strengths" (in german:

Feldstdrken) and Da and Ha the "excitations" (in german: Erregungen) fol-

lows Gustav Mie and Arnold Sommerfeld. This terminology is reasonable
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since Ea and Ba determine the Lorentz force exerted on a charged test parti-
cle whereas, in the presence of field-producing charges and currents, Da and

Ha are the fields "excited" by those sources via Maxwell's equations. The

traditional terminology of calling Ha the "magnetic field strength" is mis-

leading. Moreover, it is highly inconvenient from a relativistic point of view

where Ea and Ba, rather than Ea and Ha, are united into an antisymmetric

second rank tensor field on spacetime.
In what follows we consider Maxwell's equations in the form (2.2). As

long as only the metric is known, (2.2) gives us eight component equations for

twelve unknown functions. (The unknown functions are the six independent

components of the electromagnetic field strength plus the six independent

components of the electromagnetic excitation.) Hence, (2.2) is an underde-

termined system of partial differential equations. It must be supplemented

by constitutive equations relating the electromagnetic field strength with the

electromagnetic excitation. Thereby the medium is characterized in a phe-

nomenological way. In this chapter we consider linear dielectric and permeable
media according to the following definition.

Definition 2.1.1. A linear dielectric and permeable medium is, by defini-

tion, a medium characterized by constitutive equations that take the form

Da :-- Ca
b
Eb and Ba --:: IlabHb , (2.12)

in some reference system U', with second rank tensor fields -a
b andpab sat-

isfying the following conditions:

(a) Ua Cab = 0 and Ua /jab = 0

(b) Cab = eba and ttab = /-t
ba

.

(c) Eab Za Zb > 0 and ttab Za Zb > 0 for all (ZI, Z2, Z3, Z4) : (0, 0, 0, 0) with

Ua Za = 0.

We refer to the distinguished reference system Ub as to the rest system, to

6abas to the dielectricity tensor field and to tiab as to the permeability tensor

field of the medium.

Condition (a) of Definition 2.1.1 guarantees that the constitutive equa-

tions (2.12) are in agreement with Da Ua = 0 and Ba Ua = 0. Conditions (b)
and (c) imply that in the rest system of the medium the energy density

w =
.1 (DaEa+BaHa (2.13)
2 ) I

of the electromagnetic field is positive definite. Altogether, conditions (a),

(b) and (c) guarantee that the dielectricity and permeability tensor fields are

"spatially invertible". We can, thus, define (/.L-')ab by the properties

Ua (4_1)ab=O,

(,,-l)ab = (/.,-l)ba, (2.14)

(/_t-1)ab C

Abc = Ja + Ua Uc
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The constitutive equations (2.12) can then be united in a single equation,

.1 cd (A-1)ce, ?7erpq Uq UaGab ---

 ( 2 77 ab Ur Ud + 6bP - Cap Uq Ub) Fpq - (2.15)

The following special case deserves particular interest.

Definition 2.1.2. A linear dielectric and permeable medium is called iso-

tropic if the dielectricity and permeability tensor fields are of the special form

b
= 6 (jb + U, Ub tZab = tt (jb + Ua Ub) ,Ca a ) and

a (2.16)

with some scalar functions and IL. (Condition (c) of Definition 2.1.1 then

requires - and IL to be strictly positive.)

In the isotropic case, (2.15) reduces to

*

U )Ud)Gab (Fab + (1 CA) (Fad Ub - Fbd a (2.17)

In particular, vacuum can be characterized as a linear isotropic medium with

e = it = 1. In this case (and, more generally, in any isotropic medium with

ell = 1) Ua drops out from (2.17) and the constitutive equations take the

form (2.12) in any reference system. This is in agreement with the obvious

fact that for vacuum any reference system can be viewed as the rest system

of the medium.

We emphasize that our phenomenological constitutive equations are phys-

ically reasonable in the rotational as well as in the irrotational case, i.e., Ua

need not be hypersurface-orthogonal. Although this should be clear from the

general rules of relativity, there is still a debate on this issue, even in the case

of an isotropic medium on flat spacetime, see, e.g., Pellegrini and Swift [106].
We are now going to analyze the dynamics of electromagnetic fields in

a linear dielectric and permeable medium. We have already mentioned that

Maxwell's equations (2.2) alone give us eight equations for twelve unknown

functions. With (2.12) at hand, and assuming that Ua, Ca
b and Pa

b
are known,

we can eliminate six of the unknown functions. Now (2.2) gives us eight equa-

tions for six functions, i.e., the system looks overdetermined. However, only

six of those eight equations are evolution equations, governing the dynamics of

electromagnetic fields, whereas the other two equations are constraints.This

is most easily verified in a local coordinate system (xi, X2, X3, X4) in which

the hypersurfaces x4 = const. are space-like such that x4 can be viewed as

a local time function. Owing to the antisymmetry of the Levi-Civita tensor,

the a = 4 components of equations (2.2) do not involve any a4 derivative.

Hence, these two equations are to be viewed as constraints whereas the re-

maining six equations, i.e., the a = 1, 2, 3 components of equations (2.2),
are the evolution equations governing the dynamics. Again owing to the anti-

symmetry of the Levi-Civita tensor field, the evolution equations preserve the

constraints in the following sense. If the constraints are written in the form
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C1 = 0 and C2 = 0, then the evolution equations imply that (94C, = fi C1
and o94C2 = f2 C2 with some spacetime functions f, and f2. Hence, if a

solution of the evolution equations satisfies the constraints on some initial

hypersurface x
4
= const., then it satisfies the constraints everywhere (on

some neighborhood of any point of the initial hypersurface, that is). In other

words, locally around any one point all solutions of Maxwell's equations can

be found in the following way.

Step 1. Choose a space-like hypersurface through that point.

Step 2. Choose a local coordinate system such that the chosen hyper-
surface is given by the equation x

4
= const.

Step 3. Solve the evolution equations with all initial data that satisfy
the constraints.

In the rest of this section we shall prove that the initial value problem con-

sidered in Step 3 is well-posed in the sense that it is characterized by a local

existence and uniqueness theorem, provided that the initial hypersurface has

been chosen appropriately. Conditions (a), (b) and (c) of Definition 2.1.1 will

prove essential for this result.

First we introduce special coordinates according to the following defini-

tion.

Definition 2.1.3. Let U' denote the rest system of a linear dielectric and

permeable medium and fix a spacetime point x0. Then a local coordinate sys-

tem (Xl,X2,X3,X4) , defined on a neighborhood of x0, is called adapted to Ua

near x0 if

(a) Ua is given by the equation Ua xa

77ffg 4=4= 14

(b) 94A = 0 for p = 1, 2, 3 at the point xo -

For any linear dielectric and permeable medium, it is obvious that adapted
coordinates are characterized by the following existence and uniqueness prop-

erty. If we choose a spacetime point x0 and a hypersurface S that is orthogonal

to Ua at x0, then there is a coordinate system adapted to U1 near xo such

that S is represented by the equation x
4
= const. Another coordinate system

(xilxt2 x13 x/4) is, again, adapted to Ua near xo if and only if it is related

to (Xl,X2,X3,X4) by a coordinate transformation of the special form

Xpi )X
/P (X1,X2,X3)

X
4 X/4(X1, X2,X3,X4)

(2.18)

with
9X/4

0.
TZF .,

Condition (b) of Definition 2.1.3 makes sure that at the point xo the

hypersurface x4 = const. intersects the respective integral curve of Ua or-

thogonally. This implies that, on a sufficiently small neighborhood of x0, all

hypersurfaces x4 = const. are space-like. Of course, they cannot be orthogo-

nal to Ua on a whole neighborhood unless the medium is non-rotating. Hence,



12 2. Light propagation in linear dielectric and permeable media

in an adapted coordinate system the mixed components 9,.4 and g114 of the

metric need not vanish except at the central point xo. The spatial components

give positive definite 3 x 3 matrices (g,,,) and (gl") on some neighborhood
of xO; at the point xo these matrices are inverse to each other. The temporal

components 944 and g
44

are strictly negative functions on some neighborhood
of xO ; at the point xO they are inverse to each other.

Now we consider a linear dielectric and permeable medium in a coordinate

system adapted to its rest system Ua near some point xO. Then (2.11) reduces

to

E4=B4=0 and D4=H4=0 (2.19)

owing to condition (a) of Definition 2.1.3. Hence, (2.12) simplifies to

D, = e,P Ep and B, = p,P Hp . (2.20)

Conditions (b) and (c) of Definition 2.1.1 guarantee that -,P and A,P are

positive definite and symmetric with respect to gP. We can, thus, define v,P

and w,P, which are again positive definite and symmetric with respect to

gP', by

M,,' v,' v,-P = JP and e,,' w,' w,P = JIP, (2.21)
V

For the following it will be convenient to introduce the quantities

Zp = vp
a

B, and Yp = wp'D, , (2.22)

and to use Z1, Z2, Z3, Y1, Y2, Y3 for the six independent components of the

electromagnetic field. That is to say, we start from Maxwell's equations (2.2)
with (2.6) and (2.10); we use part (a) of Definition 2.1.3 and equation (2.19);
we eliminate E, and H, with the help of (2.20); finally, we express D, and

B, in terms of Zp and Yp by means of (2.22). After a little bit of algebra,

the a = 1, 2, 3 components of Maxwell's equations (2.2) give us evolution

equations of the form

La j9a
Y Y 0

(2.23)(Z) +M (Z) = (1)
for the dynamical variables

Z, Y,

Z2 Y2Z = (Z3) and Y = (Y3) (2.24)

Here L1, L2, L3 and L
4
are x-dependent 6 x 6 matrices of the form

L
4
=

1 QT
and LP

0 (AP)T
(2.25)(Q 1 ) AP 0 ) '
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where Q is a 3 x 3 matrix with components

QAT
=: WXv 77.4

4-y
V_Y

T
= Wx"'w04-y V_YT904 (2.26)

AP is a 3 x 3 matrix with components

APxIT = WXV?7v4PY Uy
'r (2.27)

)T means transposition with respect to gP" such that, e.g.,

(QT),\,r gp,\ = QxP gr,\ ; (2.28)

M is a 6 x 6 matrix whose components involve the spacetime metric along
with v,\' and wpr.

For the investigation of the evolution equations (2.23) the following two

observations are crucial.

(a) At the central point xo of our adapted coordinate system we have 9,04 = 0

and, thus, Q = 0. By continuity, L
4

is invertible on some neighborhood

of xO to which we can restrict our considerations. Hence, (2.23) can be

solved for the i94 derivative.

(b) L1, L2

,
L3 and L4are symmetric (=self-adjoint) with respect to the

positive definite scalar product

z1) . (Z2) =
'I (Z1 - Z2 + Y1 - Y2) (2.29)(YJ Y2 2

Here the dots on the right-hand side refer to the scalar product defined

by

a - b = gl" Zi-, bm (2.30)

for any two (C3-valued functions a and b on the neighborhood considered,

with the overbar denoting complex conjugation. (To be sure, in (2.23)
all quantities are real. For later purposes, however, we need the complex

version of this scalar product.)

These two observations imply that (2.23) satisfies the defining properties of a

symmetric hyperbolic system of partial differential equations. By a well-known

theorem (see, e.g., Theorem 4.5 in Chazarain and Piriou [261 or Sect. 4.12

in Egorov and Shubin [36]) this guarantees local existence and uniqueness

of a solution Z, Y for any initial data ZO, YO given on our hypersurface
X4 = const. (Please recall our stipulation of tacitly working in the CI cate-

gory throughout Part I. Had we restricted ourselves to the analytic category

instead, property (a) alone would guarantee local existence and uniqueness

of a solution to any initial data, owing to the well-known Cauchy-Kovalevsky

theorem.) Moreover, the fact that (2.23) is symmetric hyperbolic implies that

solutions Z, Y are bounded in terms of so-called energy inequalities, see, e.g.,
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Theorem 4.3 in Chazarain and Piriou [261 or Theorem 2.63 in Egorov and

Shubin [36]. We are going to employ these facts later.

The explicit form of the matrix M in (2.23) will be of no interest for

us in the following. What really matters is the structure of the L, i.e., the

information contained in the 6 x 6 matrix

L(x, p) = pa L'(x) . (2.31)

Here the first argument x = (Xl,X2,X3,X4) ranges over the coordinate neigh-
borhood considered and the second argument p = (P1, P2 7 P3 i P4) ranges over

R4. The matrix L(x, p) defined by (2.31) is called the principal matrix or the

characteristic matrix of the system of differential equations (2.23). Its deter-

minant, which gives a homogeneous polynomial of degree six in the Pa, is

called the principal determinant or the characteristic determinant of (2.23).
We shall see later that the laws of ray optics in our medium are coded in the

characteristic determinant.

The notions of characteristic matrix and characteristic determinant can

be introduced for any system of kth order partial differential equations, linear

in the highest order derivatives, that gives n equations for n dynamical vari-

ables. The characteristic matrix is then formed in a fashion similar to (2.31)
from the coefficients of the highest order derivatives. If these coefficients axe

independent of the unknown functions, i.e., if the system of differential equa-

tions is semi-linear, the characteristic matrix is of the form

L(x, p) =Pal ... Pa, L
al ...

ak(X). (2.32)

Hence, its determinant gives a homogeneous polynomial of degree nk with

respect to the Pa.

2.2 Approximate-plane-wave families

In the preceding section we have discussed Maxwell's equations in a linear

dielectric and permeable medium. The laws of light propagation in such a

medium are determined by the dynamics of wavelike solutions of those equa-

tions. In this section we clarify what is meant by the attribute "wavelike".

The following definition is basic.

Definition 2.2.1. An approximate-plane-wave family is a one-parameter

family of antisymmetric second rank tensor fields of the form

Fab(a, x) = Rej e S(x)lcl fab(ai X) 1 (2.33)

with the following properties.

(a) The coordinates x = (x1,X2, X3,x4) range over some open subset of the

spacetime manifold and the parameter a ranges over the strictly positive
real numbers, a E R+.
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(b) S is a real-valued function whose gradient has no zeros, i.e.,

8S(X) = (49IS(X), a2S(X),193S(X), 494S(X)) 0 (0, 0, 0, 0) (2.34)

for all x in the neighborhood considered. We refer to S as to the eikonal

function of the approximate-plane-wave family.

(c) For each a E R+, fab(a7 *) is a complex-valued antisymmetric second

rank tensor field. Moreover, fab admits a Taylor expansion of the form

No+1

a b(x) + 0(aNO+2)Nf fab (Ce 7 X) :--
b (2.35)

N=O

for all integers No > -1, where

---fff b (x) = N! lim
9N

fab(a, x) . (2.36)
a-- O

ac,

We refer to f br as to the Nth order amplitude of the approximate-plane-

wave family.

(d) For all x in the neighborhood considered,

(fa0bW) 0 0
- (2.37)

In (2.33), i denotes, of course, the imaginary unit, i2 1, and Re denotes

the real part of a complex number.

We call S the "eikonal function" because an approximate-plane-wave fam-

ily satisfies Maxwell's equations in an asymptotic sense to be discussed later

only if S satisfies a partial differential equation which is known as the eikonal

equation. The term "eikonal", which was introduced in 1895 by Bruns [23]
in a more special context, is derived from the greek word eikon which means

"image". This terminology is, indeed, justified since the eikonal equation is

the fundamental equation of ray optics; so it governs, in particular, the ray

optical laws of image formation.

According to our general stipulation that all maps and tensor fields are

tacitly assumed to be infinitely often differentiable it goes without saying

that fab(al x) is a C' function of a E R+. A Taylor expansion of the form

(2.35) is valid if and only if this function admits a C' extension into the

point a = 0. Note that we do not assume that the O(aN+1) term in (2.35)

goes to zero for N --+ oo, i.e., we do not assume analyticity with respect to

a.

It is important to realize that an approximate-plane-wave family cannot

converge for a --+ 0. This is an immediate consequence of the following lemma

which will often be used in the following.

Lemma 2.2.1. Let S be the eikopal function of an approximate-plane-wave

family, according to Definition 2.2.1 (b). Let u be a complex valued function

defined on the same open subset of spacetime as the approximate-plane-wave

family. (As always in Part I, we tacitly assume that u is of class C' and,

thus, continuous). Then lim Re{e'S/auJ exists pointwise only if u = 0.
a-0
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Proof. If u is different from zero at some point, it is different from zero, by
continuity, on a whole neighborhood. For almost all points x of this neigh-

borhood, (2.34) implies that S(x) =h 0 and the limit does not exist. 1:1

We are now going to justify the name "approximate-plane-wave family".

(More fully, (2.33) should be called a "locally-approximate-plane-and-mono-
chromatic-wave family". This terminology, however, seems a little bit too

cumbersome.) The physical idea behind Definition 2.2.1 becomes clear if we

consider the special case that the tensor fields OaS and fab(a7 -) are covari-

antly constant (and non-zero, as assured by (2.34) and (2.37)), i.e., that the

equations WaS = 0 and Vcfab(a) ') = 0 are satisfied. Then (2.33) gives
a one-parameter family of monochromatic plane waves. With respect to an

inertial system (i.e., a covariantly constant time-like vector field Va with

gab Va Vb = -1), the frequency of such a wave is given by w = IVaOaS and
I Vb

Ct

the spatial wave covector is given by ka ;, 19aS - W gab . Hence, the limit

a -* 0 corresponds to infinitely high frequency with respect to all inertial

systems Va with VI 49aS :A 0.

Now this is a very special case since on a spacetime without symme-

try there are no non-zero covariantly constant vector fields. Therefore, as we

want to work with ansatz (2.33) on an arbitrary spacetime, we cannot assume

that (9aS and fab (a7 - ) are covariantly constant. However, if we restrict our

consideration to a sufficiently small neighborhood7 OaS and fab(al -) deviate

arbitrarily little from being covariantly constant. Similarly, on a sufficiently
small neighborhood, any time-like vector field Va with gab Va Vb = -I devi-

ates arbitrarily little from an inertial system. However small this neighbor-
hood may be, by choosing a sufficiently small we can have arbitrarily many

wave periods in this small spacetime region.
This reasoning justifies the terminology introduced in Definition 2.2.1.

Please note that (2.34) and (2.37) are essential to guarantee that (2.33) gives

an approximately plane and monochromatic wave near each point for a suf-

ficiently close to zero.

In correspondence with this interpretation we shall refer to the hyper-
surfaces S = const. as to the wave surfaces of our approximate-plane-wave

family. The alternative terms eikonal surfaces and phase surfaces are also

common. Moreover, we call

w(a, x) = -.1. 19aS(X) Va(x) (2.38)

its frequency function and we call

ka (ce, x) = I- 19aS(X) - LO (Ci, X) gab(X) Vb(X) (2.39)
a

its spatial wave covector field with respect to the observer field Va; here all

those time-like vector fields with gab Va Vb = -1 are admitted for which

Va OaS has no zeros.
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It is worthwile to note that from an approximate-plane-wave family (2.33)
we can produce non-monochromatic waves by integrating over a with an

appropriate density function w,

C,

Rab(X) Fab (a, x) w(a) da . (2.40)
al

This can be viewed as a generalized Fourier synthesis. Here we have to assume

that a, < 02, with a2 sufficiently small to justify the approximate-plane-

wave interpretation. Moreover, it is also possible to form superpositions of

approximate-plane-wave families with different eikonal functions S.

2.3 Asymptotic solutions of Maxwell's equations

To study the dynamics of wavelike electromagnetic fields in our medium

we have to plug our approximate-plane-wave ansatz (2.33) into Maxwell's

equations, i.e., into (2.2) supplemented with our constitutive equations. Un-

fortunately, only in very special cases is it possible to determine the eikonal

function S and the amplitudes f b in such a way that the resulting equations

are exactly satisfied for some a E R+. It is the characteristic feature of the

ray method to determine S and f, b in such a way that Maxwell's equations

are satisfied, rather than for some finite value of a, asymptotically for a --> 0.

In this way the ray method gives us the dynamics of wave surfaces and wave

amplitudes in the high frequency limit. To put this rigorously we introduce

the following notation.

Definition 2.3.1. For N E Z, an approximate-plane-wave family Fab(al
in the sense of Definition 2.2.1 is called an Nth order asymptotic solution of

Maxwell's equations if

lim I abcd
W, 77 09bFcd(a1 0,

a-0
G_

(2.41)
lim (-2-V 77

abcd ab ('Rcd`f Gef (a) 0
a--+O C,

Here Gf(a, - ) is related to Fab (Ce7 by the constitutive equations of the

medium.

In (2.41), the limits are meant to be performed pointwise with respect

to the spacetime coordinates; we shall restrict ourselves to neighborhoods on

which the convergence is uniform. For the evaluation of (2.41), the following

two observations are crucial.

(a) The metric is independent of a and so are the other tensor fields that

enter into the constitutive equations, i.e., U', '-a
b and Pab. Hence, the

special form in which a enters into the approximate-plane-wave ansatz

(2.33) together with the linearity of the constitutive equations implies

that (2.41) is trivially satisfied for N < -1.
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(b) If (2.41) holds for N = No, then it holds all the more for N < No.

thThese two observations together suggest that No order asymptotic solutions

can be found for arbitrarily large No > 0 by first evaluating (2.41) for N = -1

and then proceeding step by step up to N = No. We shall see in the following
that this inductive procedure gives us dynamical laws for the eikonal function

S and, step by step, for the amplitudes f, b up to arbitrarily large order

N = No.
If we want to get dynamical laws for f, b for all N E N, we have to assume

that our approximate-plane-wave family (2.33) satisfies (2.41) for all N E N

or, what is the same, for all N C- Z. In this case F,,.b (Ce, is called an infinite

asymptotic series solution of Maxwell's equations.

Fig. 2. 1. For N > 0, an Nth order asymptotic solution F(,b (a, of Maxwell's equa-

tions approaches the space of exact solutions of Maxwell's equations asymptotically
for oz -+ 0, as will be proven in Sect. 2.7.

(2.41) does, of course, not imply that the one-parameter family Fab(a 7

converges pointwise (or in any other sense) towards an exact solution of

Maxwell's equations for a --> 0. We have already emphasized that for an

approximate-plane-wave family the limit lim. F,,b(a, *) cannot exist. This
C,__+O

raises the question of whether asymptotic solutions can be viewed as approx-

imate solutions. This question will be answered in Sect. 2.7 below by proving

the following result. Let Fab(a7 -) be an approximate-plane-wave family that

is an Nth order asymptotic solution of Maxwell's equations in a linear di-

electric and permeable medium for some N > 0. Then there exists, locally
around any one point, a one-parameter family F*ab(a, ') of exact solutions

of Maxwell's equations such that F,*,b(a, Fab(a) ) goes to zero in the

pointwise sense (and even with respect to some finer norms involving arbi-

trarily high derivatives) as aN+1 for a --+ 0. In other words, for a sufficiently
small the members of our approximate-plane-wave family can be viewed as

arbitrarily good approximations to exact solutions of Maxwell's equations.

Figure 2.1 illustrates this situation in the infinite-dimensional space of (CI)
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antisymmetric second-rank tensor fields defined on some open spacetime do-

main.

2.4 Derivation of the eikonal equation
and transport equations

In this section we derive, in a linear dielectric and permeable medium, the

dynamical equations for wave surfaces and for wave amplitudes in the high

frequency limit. We do that locally around any spacetime point xO. As a

preparation, we prove the following fact.

Proposition 2.4.1. Consider an approximate-plane-wave family Fab(a,
that is an Nth order asymptotic solution of Maxwell's equations in a lin-

ear dielectric and permeable medium for some N > -1. Then the frequency

function (2.38) of Fab(a) ') with respect to the rest system of the medium

(Va = Ua) has no zeros.

Proof. We introduce, around any spacetime point x, a coordinate system

adapted to Ua in the sense of Definition 2.1.3. We are done if we can show

that o94S is different from zero at x,,. By assumption, our approximate-plane-

wave family satisfies (2.41) for N = -1, i.e.

77
abcd abS fcod = 0 (2.42)

77
abcd

abS 77,def 900 = 0 (2.43)

where gO is related to fcod by the constitutive equations. (Here we made use
ef

of Lemma 2.2.1.) Now let us assume thata4S = 0 at x,. At this point, the

a = 4 component of (2.42) implies

g"' ajS bo, = 0 (2.44)

for the magnetic part bO, of fa0b, whereas the a P components of (2.42) imply

a,S eto, - 81,S eo, 0 (2.45)

for the electric part eo of falb. Similarly, (2-43) results in
V

and

9
A'r a,,S d2r = 0 (2.46)

a,S ho - ajS ho 0 (2.47)
A V

for the electric part dO. and for the magnetic part hO Of goaab. Note that S is

real whereas the amplitudes are complex. (2.45) and (2.46) imply

9/,&'r eo TO, aS = 0
. (2.48)
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Similarly, (2.44) and (2.47) imply

9trr ho R, aS = 0
. (2.49)

Recall that we are at a point where a4S = 0. Thus, condition (2.34) re-

quires (a, S, i92S, a3S) : (0, 0, 0). Hence, by condition (c) of Definition 2. 1. 1,

(2.48) implies that (eO, eo, eo) = (0, 0, 0) and (2.49) implies that (bO, bO, bO)1 2 3 1 2 3

(0, 0, 0). This shows that our hypothesis of i94S having a zero gives a contra-

diction to (2.37). (3

To analyze the dynamics of wave surfaces and amplitudes in the high

frequency limit near an arbitrary spacetime point xO, we introduce near xO a

coordinate system which is adapted to the rest system U' of the medium in

the sense of Definition 2.1.3. We can then express electromagnetic fields in

terms of the dynamical variables Z1, Z2, Z3, Y1, Y2, Y3 introduced in (2.22).
Then any approximate-plane-wave family takes the form

Z(a )) = RefeiS(X)l
No+1

(XN (ZN(X)) + o(aNo+2) (2.50)
Y(a x)

E yN(X)
N=O

for any integer No > -1. Here the complex amplitudes f, b from (2.35) are ex-

pressed in terms of (C3-valued functions zN and yN. The following proposition

gives necessary and sufficient conditions on the eikonal function S and on the

amplitudes zN, yN such that (2.50) is an asymptotic solution of Maxwell's

equations.

Proposition 2.4.2. Consider, locally around any spacetime point xO, a co-

ordinate system (xi, x2, x3, x') adapted to the rest system Ua of a linear

dielectric and permeable medium, Then an approximate-plane-wave family,

represented in this coordinate system in the form (2.50), is an asymptotic

solution of Maxwell's equations in lowest non-trivial order N = -1 if and

only if 94S has no zeros and

,OaS La
Z

0 (2.51)(YO) = CO)
th

For No  ! 0, such an approximate-plane-wave family is an No order asymp-

totic solution of Maxwell's equations if and only if, in addition,

a(ga+M
ZN)

ZN+1
N +1) (2.52)(L ) (Y = -i i9aS La (YN+1

for 0 < N < No -
Here La and M denote the same matrices as in the

evolution equation (2.23).

Proof. In our adapted coordinate system, we decompose the asymptotic

Maxwell's equations (2.41) into constraint part (a = 4) and evolution part
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(a = p). If these equations are satisfied by an approximate-plane-wave family
for some N > -1, Proposition 2.4.1 implies that i94S has no zeros. Under

this condition the evolution part of (2.41) alone already implies the con-

straint part of (2.41). This is easy to verify using the fact that, as outlined in

Sect. 2.1, the evolution equations preserve the constraints. In other words, we

can forget about the constraints and concentrate on evaluating the evolution

part of (2.41). According to (2.23), this takes the form

Z(a,
lim 1 (L',% + M) )) = (0) (2.53)
ce-0 ( I (Y(a, -) 0

in terms of the variables Z1, Z2, Z3, Y1, Y2, Y3. Hence, our approximate-plane-

wave family is an asymptotic solution of Maxwell's equations to lowest non-

trivial order N = -1 if and only if a4S has no zeros and (2.53) is satisfied

for N = -1. By feeding (2.50) into (2.53) for N = -1 we see that the latter

condition is equivalent to (2.51), owing to Lemma 2.2.1.
th

For No > 0, our approximate-plane-wave family is an No' order solution

if and only if in addition (2.53) is satisfied for all 0 < N < No. Upon feeding

(2.50) into (2.53), it is easy to prove by induction over N that this is true if

and only if (2.52) is satisfied for 0 < N < No -

1-:1

Condition (d) of Definition 2.2.1 requires that, if (2.50) represents an

approximate-plane-wave family, zO and yo do not vanish simultaneously.

Clearly, such a solution zo, yo of (2.51) exists if and only if

det(i9,,SL') = 0
- (2.54)

This is a first order partial differential equation for S, homogeneous of degree

six with respect to the components of the gradient of S. If S satisfies (2.54)
and if 04S has no zeros, S is called a solution of the eikonal equation of the

linear dielectric and permeable medium considered. By Proposition 2.4.2, this

is a necessary and sufficient condition for S to be the eikonal function of an

approximate-plane-wave family that satisfies Maxwell's equations asymptot-

ically to order N = -1 at least. In the theory of partial differential equations

(2.54) is called the characteristic equation of the system of evolution equa-

tions (2.23).
In the next section we discuss the eikonal equation in our medium in more

detail. In particular, we free ourselves from the special coordinates used so

far.

If we have a solution S of the eikonal equation, Proposition 2.4.2 can be

used to construct an asymptotic solution of arbitrarily high order. To that end

the amplitudes ZN and yN have to be determined inductively with the help

of (2.51) and (2.52). Clearly, ZN+1 and yN+1 are not uniquely determined

through ZN and yN since, for a solution of the eikonal equation, aaS L'

has a non-trivial kernel. Let Ps(x) denote the 6 x 6 matrix that projects

orthogonally onto the kernel of OaS(x) La (X), where "orthogonally" refers to
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the scalar product (2.29). For any solution S of (2.54) the rank of Ps(x) is

bigger than or equal to one. We shall prove later that, owing to the special
form of the matrices L(x), the rank of Ps(x) cannot be bigger than two. In

general, the rank depends, of course, on x.

Let us write

(ZN
N

(ZN) = (YZN)
N

_L ) = PS (, ) and
11

- (Z-L (2.55)
N N N IN N

Y-L y Y11 Yi-

This decomposition of the amplitudes ZN and yN implies, via (2.50), a de-

composition of Z and Y and thus, via (2.22), a decomposition of the electric

and of the magnetic component of our approximate-plane-wave family.
In terms of the decomposition (2.55), the inductive scheme for the ampli-

tudes is given by the following proposition.

Proposition 2.4.3. Let S be a solution of the eikonal equation and fix an

th
integer No > 0. Then the one-parameter family (2.50) is an No order asym-

ptotic solution of Maxwell's equations if and only if the amplitudes ZN and

yN satisfy

Z10,
(2.56)( 11) := (0)y0 0

and

ZN) ZN+1)a,ga + jV(1 - Ps) (L . 1) -iOaSL
a (2.57)

yN (YN+1
H

N N N

a J_ _L 11
PSL 9a(ZL)+PSM(z"L)=-Ps(L'a,,+M)(Z (2.58)

N N N

Y-L Yi- y1i

for 0 < N < No. (2.56) is called the Oth order polarization condition, (2.57)
is called the (N + I)th order polarization condition and (2.58) is called the

Nth order transport equation.

Proof. (2.56) is obviously equivalent to (2.51). To prove that (2.57) and (2.58)

together are equivalent to (2.52), we decompose (2.52) into two equations by

applying Ps and 1 - Ps respectively. The first equation gives (2.57), the

second equation gives (2.58). This is readily verified with the help of the

equations aaS L
a
pS = 0 and &aSPSL

a
= 0. (The first equation is trivial

and the second follows from the fact that 49aS L
a

is symmetric with respect

to the scalar product (2-29).) n

Since (2.57) can be solved for z'V+1 and yN+1 , by this equation the
R 11

components of ZN+1 and yN+1 are algebraically determined through the
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lower order amplitudes ZN and yN. This gives a restriction on the allowed

directions of the electric and magnetic field vectors which justifies the name

"polarization condition".

If ZN and y
N

are known, (2.58) gives a system of first order differential
11 11

equations for z
N and yN. Later we shall associate solutions of the eikonal
I I

equation with congruences of rays. The name "transport equation" refers to

the fact that (2.58) gives us ordinary differential equations (i.e., "transport

laws") for the components of z
N and y

N along each ray, as will be shown in
J_

Sect. 2.4 below.

In spacetime regions where PS has constant rank, (2.58) admits a well-

posed initial value problem in the following sense. If

1 < rank Ps = k = const. (2.59)

we can choose k basis vector fields a,,..., ak (complex six-tuples depending

on x), orthonormal with respect to the scalar product (2.29), such that

k

PS = E aA OaA, (2.60)
A=1

where (9 denotes the standard tensor product on C'. Hence, z
N and yN are

of the form

ZN k

_L

E N aA (2.61)
YN

A

I A=1
(

with some C-valued functions  N. Then the Nth order transport equation
 N which(2.58) gives a system of k differential equations for the k coefficients
A

is symmetric hyperbolic. (This follows from the facts that each matrix La is

symmetric with respect to the scalar product (2.29) and that L
4

is close to

S N'..
,
Nis guaranteed1.) Hence, local existence and uniqueness of solution  1  k

for arbitrary initial values given on a hypersurface x4 const. By solving

the transport equations in this way at each level N, we determine that part

of the polarization direction which is not fixed already by the polarization

condition, and we determine the intensity of our approximate plane wave.

Now it is clear how, for a solution S of the eikonal function that satis-

fies the rank condition (2.59), the amplitudes zN and yN can be determined

th
inductively to construct an No' order asymptotic solution of Maxwell's equa-

tions.

1. The induction starts with setting A = Y
0
= 0.

11 11

2. The Nth step of the induction, 0 < N < No, is given by the following
N N N N by solvingprescription. With z
11

and yll known, determine z_L and yi-

(2.58) with arbitrary initial values. (The only restriction on the initial

values is that zo, and yO, must not vanish simultaneously.) Then, deter-

N+1 N+1
mine z

11
and y,, with the help of (2.57).
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ZN+I,The other amplitudes (i.e, IN, yN YN+1 for N > No + 1) and the

o(aNo+2) term can be chosen arbitrarily. (E.g., they could be set equal
to zero.) Then (2.50) gives an approximate-plane-wave family that satisfies

Maxwell's equations asymptotically to order No.
This construction can be carried through for arbitrarily large No, i.e., it

can be used to construct (non-convergent) infinite asymptotic series solutions

of Maxwell's equations. In the very special case that the induction yields
N N 0 for some N > 1 we can set zM and yM equal to zero forIII
-

Y

M >  'to get an approximate-plane-wave family that satisfies Maxwell's

equations exactly for all a E R+.

The results of this section show how to construct, locally around any

spacetime point, an approximate-plane-wave family that satisfies Maxwell's

equations in a linear dielectric and permeable medium asymptotically to some

order N > 0. The physical relevance of those one-parameter families is in

the fact that they can be interpreted as approximate solutions of Maxwell's

equations as well. This will be proven in Sect. 2.7 below. Already now we

emphasize that this is not true for asymptotic solutions of lowest non-trivial

order N = -1. In other words, if it is our goal to set up a viable approximation
scheme for exact Maxwell fields we have to consider approximate-plane-wave
families that satisfy Maxwell's equations asymptotically to order N = 0 at

0 0 1 1least. In this order we get polarization conditions that fix 111,Y11 , 111,Y11 ,
and

0
we get transport equations for I I

and yo, .
This N = 0 theory is often called

the geometric optics approximation of Maxwell fields.

2.5 Discussion of the eikonal equation

In the preceding section we have derived the eikonal equation of our medium,

locally axound an arbitrarily chosen point, in a special coordinate system. It

is now our goal to analyze the structure of this equation and, in particular,
to rewrite the eikonal equation in covariant form.

In a coordinate system adapted to the rest system of the medium, the

eikonal equation was given by (2.54) supplemented with the condition that

,04S has no zeros. Clearly, the characteristic matrix L(x,p) = PaLa(x) is a

real 6 x 6 matrix, symmetric with respect to the scalar product (2.29). Hence,
it has six real eigenvalues and the characteristic determinant det (Pa La (x))
is the product of these eigenvalues. If we want to bring the eikonal equation
in a more explicit form we have to determine these six eigenvalues.

First we reduce this six-dimensional eigenvalue problem to a three-

dimensional eigenvalue problem. To that end we introduce, for all x in the

spacetime neighborhood considered and for all p, = (Pi, P2, P3, P4) E R4, the

real 3 X 3 matrix

W(X,P) =
1

(P4 Q(X) + pp AP(x)) (2.62)
V - 944 (X)
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which, by (2.25), enters into the characteristic matrix according to

p,, L' (x)  P4 -944(X) ( 0 W(X,p)T
(2-63)

10 ) + V 944(X)(01 W(X,P) 0

The (strictly positive) factor V -944(X) was introduced in (2.62) for later

convenience. Then the 3 x 3 matrix W(X'p)TW(X'p) is obviously positive

semidefinite and symmetric with respect to the scalar product (2.29). Hence,

it has three real eigenvectors U1 (X, P), U2 (X, P), U3 (X, P) which are orthonormal

with respect to the scalar product (2.29), and the pertaining eigenvalues are

real and non-negative. We denote these eigenvalues by hl(X,p)2, h2(X, p)2,
h3(Xi p)2 with hA(X,P) > 0 for A = 1,2,3. Similarly, the 3 x 3 matrix

W(X, p) W(X, p)T has three real eigenvectors vi (x, p), V2(X7 P), V3 (X7 p) which

are orthonormal with respect to the scalar product (2.29), and the pertaining

eigenvalues are the same as for W(X, p)T W(X, p), i.e.,

W(Xlp)T W(X, P) UA (X, P) = hA (X7 p)2 UA(X,P) ,

(2.64)
W(X, P) W(X, P)T VA (X, p) = hA(Xi P)2 VA (XIP) ,

for A = 1, 2, 3. The bases of eigenvectors can be chosen in such a way that

W(X7 P) UA (X7 P) = hA (X7 P) VA (X, P)
(2.65)

W(X,V)T VA (X, P) = hA(X, P) UA(X, P)

for A = 1, 2, 3. (In the non-degenerate case, i.e., if the eigenvalues h, (x, p)2,
h2(X, p)2, h3(X7 p)2 are mutually different, the eigenvectors UA(X,p) and

VA(X,p) are unique up to sign and the equations (2.65) are automatically

true up to sign.) These equations imply that the characteristic matrix (2.63)
satisfies

p,,, L'(x)
UA (X, P)( VA (X)A

UA (X)A
(2.66)

P4 \I-g44(x)hA(XP)) ( VA(X, P))
for A = 1, 2, 3. This equation gives us six (real) 'eigenvalues of the 6 x 6

matrix p.L' and pertaining eigenvectors in terms of the eigenvalues and

eigenvectors of the 3 x 3 matrices W(X,p)T W(x,p) and W(X,p) W(X,p)T.
As the characteristic determinant is the product of these six eigenvalues, the

eikonal equation (2.54) takes the form

3

fj ((,g4S)2 + 944 hA(' ,gS)2) = 0 (2.67)
A=1

supplemented with the condition that i94S has no zeros. To get a more explicit

form of the eikonal equation, we have to calculate the eigenvalues hA(X, p)2 of
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the matrix W(x, p)' W(x, p). If we insert the general expressions (2.26) and

(2.27) for the components of the matrices Q(x) and AP(x) into the definition

(2.62) of W(x,p), we find that the components of the matrix R(x,p) =

W(x, p)T W(x, p) are

R,'(x, p) = R'b 'r (X) PaA (2.68)01

with

Rab r (X) =
1

V
p (X) 77P

wyW W,
A
(X) W v (X) nVbr. (X) V r (X) .(2.69)0'

944
0' 4 A 4 K

The three eigenvalues hi (X, p) 2, h2(X7 p)2 and h3(X, p)2 of the matrix R(x,p)
are then given by

h1/2 (X, P)2 = 1Rab O'W Pa Pb

1 Rab " (x) Rcd P (x) - .1 Rab 0'(x) Rcd 7- (X) (2 P A 4 0' )PaPbPcPd , (2.70)

h3 (X) P)2 = 0
.

The appearance of the square root in (2.5) has the unpleasant consequence

that h, and h2 might fail to be differentiable at some points even if all input

functions are C' as tacitly assumed throughout Part L In the following we

assume that h, and h2 are C' functions at all points with (P1 7 P21 P3 7 P4)
(0,0,0,0).

The whole calculation was done around an arbitrarily chosen spacetime

point xO, in a coordinate system adapted to the rest system Ua of the medium.

From Sect. 2.1 we know that such a coordinate system is unique, locally near

xO, to within coordinate transformations of the special form (2.18). If we

perform such a coordinate change, viewing p =(PliP2iN,N) as canonical

momentum coordinates conjugate to x = (xi,X2,X37 X4) which transform as

Pa'  P/a=
axb

(2.71)
,gX,a

A

the components of the matrix R(x, p) = W(X, p)T W(X, p) transform accord-

ing to

R'
ax, 09X"r

P(X,P) (2.72)(x', p')   X7,-\
- R,
OXP

as can be read from (2.68) and (2.69). (That is the reason why we intro-

duced the factor V---g44 in (2.62).) The eigenvalues of the matrix R(x,p)
are, thus, invariant under coordinate transformations of the form (2.18), i.e.,

hA (XI, pl)2= hA (X, p)2. In other words, h, and h2 are uniquely determined

(global and invariant) functions on the cotangent bundle over spacetime.

Hence, for A = 1 and A = 2, the function
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HA (x, p) =2
1 hA (X) p)2 _ Ua(X) Ub(X) Pa Pb) (2.73)2(

is a uniquely determined (global and invariant) function on the cotangent

bundle over spacetime. We refer to HI and H2 as to the partial Hamiltonian$

of our linear dielectric and permeable medium. The eikonal equation can then

be formulated in the following way.

Proposition 2.5.1. A real-valued function S, defined on some open space-

time region U, is a solution of the eikonal equation if and only if

H, (x, aS(x)) H2 (x, aS(x)) = 0 (2.74)

and OS(x) 54 (0, 0, 0, 0) for all X E U. Here H, and H2 denote the partial

Hamiltonians introduced in (2.73).

Proof. S is a solution of the eikonal equation near any spacetime point if and

only if, in adapted coordinates near this point, (2.67) holds and 84S has no

zeros. Since, by (2.5), h3 vanishes, this is true if and only if

hl(. , aS)2 +
I (a4S)2 h2 aS)2 + 1 (a4S)2) = 0 (2.75)

944 944

holds and a4S has no zeros. From (2.5) we read that hi(x,p) and h2(X)P)

are non-zero at points (x, p) with P4 = 0 but (PI, P2, P3) 0 (01 01 0). (This
follows from the fact that (vP(x)) and (wP(x)) are invertible 3 x 3 matrices

and that the kernel of the matrix (?7a4'4P(X)P/_t) is exactly one-dimensional if

(PI, P2 7 P3) 0 (0, 0, 0).) Hence, for a solution of (2.75) the condition i94S : 4 0

is equivalent to aS 54 (0, 0, 0, 0). With the help of (2.73) we can rewrite (2.75)
in the coordinate invariant form (2.74).

We shall refer to the equations

HA (x ,
aS(x)) :-".: 0 (2.76)

for A = I and A = 2 as to the partial eikonal equations. A solution of the

eikonal equation has to satisfy at each point at least one of the two partial

eikonal equations. In the terminology of classical mechanics, (2.76) is called

the Hamilton-Jacobi equation of the Hamiltonian HA.

The set of all (x, p) with p : - (0, 0, 0, 0) and

HA(x,p) = 0 (2.77)

is called the A-branch of the characteristic variety and the equation (2.77)
is called the A-dispersion relation of our medium. The following proposition

gives some information on the geometry of the A-branch of the characteristic

variety.

Proposition 2.5.2. For A = 1 and A = 2, the partial Hamiltonian HA

introduced in (2-73) has the following properties.
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(a) HA is homogeneous of degree two with respect to the momentum coordi-

nates,

HA(X, tp) = t2 HA(X, P) (2.78)

for all real numbers t.

(b) HA satisfies the differential equation

o9HA (x, p) 1
Ua(X) = _ Ub(X)A (2.79)

ON 2

(c) At all points (x, p) with p 0 (0, 0, 0, 0) but Ub(X) Pb = 0 the partial Hamil-

tonian is strictly positive,

HA(x,p) > 0. (2.80)

In (b) and (c), U' denotes the rest system of the medium.

Proof. (a) is obviously true in the special coordinates where hA(X, p)2 is

given by (2.5). As a consequence, it is true in any coordinates since the

conjugate momenta transform homogeneously according to (2.71). To prove

(b), we read from (2.5) that, in the special coordinates used there, the mo-

mentum coordinates enter into hA(X, p)2 only in terms of the combination

944 (X) Pa - 94o- (X) P4. Thus, the coordinate invariant differential equation

U,,
'9

- (hA (Xi p)2) = 0 holds true. To prove (c) it suffices to verify from
ap.

(2.5) that hA(X, p)2 is non-zero if, in the coordinates used there, P4 = 0 but

(Pl) P2 7 P3) : (0, 0, 0). This follows from the fact that (v,P (x)) and (wP(x))
are invertible 3 x 3 matrices and that the kernel of the matrix (,q,'P(x)p )4 A

is exactly one-dimensional if (PI i P2 i P3) -0 (01 01 0) 0

By differentiating (2.78) with respect to t and setting t = 1 afterwards,

part (a) of this proposition implies that HA satisfies the equations

,OHA(x,p)
ra

OP.
= 2HA(x,p), (2.81)

02HA(x,p)
, I-a PO lbalbb

HA(x,p). (2.82)

Thus, the Hamiltonian HA is similar to the quadratic form of metric tensor,

2 (X)PaPb, but with a metric tensor that depends not only onH(x,p) = Igab
x but also homogeneously on p. Such generalized metrics are usually called

Finsler metrics; we may thus say that each partial Hamiltonian HA defines a

Finsler metric on the cotangent bundle over spacetime. Note, however, that

some authors include the assumption of positive-definiteness into the defi-

nition of the term "Finsler metric", whereas our metric (492HA(X,p)lgPa496)
cannot be positive definite. This follows from differentiating (2.79) with re

spect to Pb which demonstrates that UaUba2HA(x,p)1ap,,ab < 0. For litera-

ture on Finsler structures we refer to Rund [124] and to Asanov [10].
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From part (b) and (c) of Proposition 2.5.2 we read that

OHA
''"

allA
) 54 (0,0,0,0) (2.83)( OPI

,

ON

on the A-branch of the characteristic variety. Hence, this branch is a codi-

mension-one submanifold of the cotangent bundle which is transverse to the

fibers. By part (a) of Proposition 2.5.2, the intersection of this manifold with

each fiber has a "conic" structure.

In general, the union of the 1-branch and of the 2-branch of the charac-

teristic variety need not be a manifold. The two branches might intersect or

coalesce. It is, of course, also possible that the two branches coincide com-

pletely. (This is necessarily true if the medium is isotropic, as we shall verify

soon.) Whenever the two branches do not coincide, the medium is called

birefringent or double-refractive.
The fact that the two branches can intersect or coalesce is related to the

following unpleasant feature. Whereas (2.83) guarantees that either partial
eikonal equation (2.76) can be solved, locally around any one point, for one

of the partial derivatives 01S, o92S, 93S, a4S, this is not necessarily true

for the full eikonal equation (2.74). Hence it is not guaranteed that we can

find a hypersurface through each point such that initial data for S on that

hypersurface determine a solution of (2.74) uniquely.
The term "birefringence" refers to the fact that a light wave that enters

into such a medium from vacuum will split up, in general, into two waves. In

the appproximate-plane-wave setting considered here, one of the two waves

has an eikonal. function that solves (2.76) with A = 1, the other one with

A = 2. In general, a solution of the full eikonal equation (2.74) can satisfy

(2.76) with A = I at some points and with A = 2 at other points. Moreover,

there might be solutions of the full eikonal equation which solve (2.74) with

A = 1 and with A = 2 simultaneously. If the two branches of the characteristic

variety coincide, this is true for all solutions of the full eikonal equation.

It is worthwile to note that the partial Hamiltonians can be changed

according to

HA(x,p)i  f1A(X,P)=FA(xp)HA(xjp) (2.84)

for A = 1, 2, where FA is any real-valued function that has no zeros on the

A-branch of the characteristic variety. Clearly, such a transformation does

not affect the solutions of the partial eikonal equations. In this sense, the

dynamics of wave surfaces in our medium determines two equivalence classes

of Hamiltonians. A transformation of the form (2.84) does, of course, not

preserve the degree-two homogeneity of HA with respect to the momentum

coordinates. Thus, it will lead to a representation in which the Finsler struc-

ture is "hidden"
.

Finally, we illustrate the results of this section by considering two more

special kinds of media.
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Example 2.5.1. The Isotropic Case

If our linear dielectric and permeable medium is isotropic in the sense of

Definition 2.1.2, the two branches of the characteristic variety coincide and

are given by the null cone bundle of a Lorentzian metric. In particular, there

is no birefringence in an isotropic medium. To verify these well-known facts

with the help of our general results, we first observe that, in the isotropic

case, (2.21) simplifies to

1 1
Jrva, K and w.' = a

. (2.85)
I-
V Y

'7 76

Upon inserting this into (2.69) and using the identity (2.7) of the Levi-Civita

tensor field, the non-zero eigenvalues in (2.5) take the form

hi(x, p)2 = h2(X7 P)2 =
gab (X) + Ua(X) Ub(X)

PaPb - (2.86)
SWILW

Thus, the partial Hamiltonians (2.73) coincide and are given by

H(x,p) = HI(X7P) = H2(X)P) = .1 gab (X) PaPb 1 (2.87)2 0

where

ab
=

1
(gab + Ua Ub - ua ub (2.88)90

6p

are the contravariant components of a Lorentzian metric which is called the

optical metric of the isotropic medium. Please note that gabU U = -1
0 a b

and that gab gab Xa
Xb =

I gab Xa
, o

Ua Xb = 0 implies
0 Ep

Xb. Both observations

together imply that the optical metric is, indeed, of Lorentzian signature

The strictly positive function

n (2.89)V

is called the index of refraction of the isotropic medium. If n = I (and, in

particular, in the vacuum case e = p = 1) the optical metric and the space-

time metric coincide, gab = ab
0 g . Hence, the eikonal equation in an isotropic

medium has exactly the same structure as in vacuum; we just have to replace
the spacetime metric with the optical metric. This is a well-known result. It

was derived, with increasing mathematical rigor, by Gordon [50], Pharn Mau

Quan [117] and Ehlers [38].

Example 2.5.2. The Uniaxial Case

Now we specialize from a general linear dielectric and permeable medium to

the case that the permeability tensor field has the same form as for vacuum,

A
ab
= 9

ab
+ Ua Ub. Moreover, we assume that the dielectricity tensor field,

which can be written in the form Eab = 6, Xa Xb Xa Xa Xb
I I + E2 2 X2b + 63 3 3

with



2.6 Discussion of transport equations and the introduction of rays 31

Xpa
a

t)
Xb Ub

ab a
-= 6pa) gab Xo- = 0 and Ea > 0 for o, = 1, 2, 3, has a doubleg

eigenvalue, say el = E2. In this case the functions hi(x, p)2 and h2(X, p)2 of

(2.5) axe bilinear with respect to the momentum coordinates. An example for

such a medium is a uniaxial crystal. For the partial Hamiltonians (2.73) we

find in this special case after a quick calculation

HA(x7P) ==
1 ga6 (X) PaA (2.90)
2 oA

for A = 1 and A = 2, where

90ab =
1

(,ab + Ua Ub) _ Ua Ub,
61 (2.91)

ab
1
(Xa Xb + X2a Xb) +

I b
- Ua Ub.

9 =

Oa

X3o2
-

1 1 2 X3
F3 El

Hence, either branch of the characteristic variety is the null cone bundle of

a Lorentzian metric. Generalizing the terminology from the isotropic case,

the two metrics (2.91) can be called the optical metrics of the medium. The

first optical metric does not distinguish a spatial direction, i.e., it is of the

same kind as the optical metric in an isotropic medium. The second optical

metric, however, reflects the fact that the X3-direction is distinguished in the

medium considered. In a situation like this the 1-branch of the characteristic

variety is usually called the ordinary branch whereas the 2-branch is called

the extraordinary branch. In this terminology solutions of the partial eikonal

equation (2.76) with A = 1 are associated with ordinary waves and solutions

with A = 2 are associated with extraordinary waves.

If the eigenvalues El, -52) E3 of the dielectricity tensor field are mutually

different, the two characteristic varieties are no longer the null cone bundles of

Lorentzian metrics. An example for such a medium is a biaxial crystal. If we

want to speak of "optical metrics" in such a medium, we have to understand

the term "metric" in the Finslerian sense. Both these optical Finsler metrics

display the anisotropy of the medium in a symmetrical way, i.e., it is not

justified to distinguish one of them by the attribute "ordinary". For this

reason, we prefer to speak of 1-waves and 2-waves (rather than of ordinary

waves and extraordinary waves) in general anisotropic media.

2.6 Discussion of transport equations and the

introduction of rays

In this section we associate solutions of the eikonal equation in a linear di-

electric and permeable medium with congruences of rays. The guiding idea

is to introduce the notion of rays in such a way that the transport equations

(2.58) can be reinterpreted as ordinary differential equations along rays.



32 2. Light propagation in linear dielectric and permeable media

According to Proposition 2.5.1 the left-hand side of the eikonal equation
has a product structure. This suggests to introduce, for solutions S of the

eikonal equation, the following terminology. S is called a solution of multiplic-
ity two iff it satisfies both partial eikonal equations (2.76), and it is called a

solution of multiplicity one iff it satisfies exactly one of the two partial eikonal

equations. The multiplicity can, of course, change from point to point.
In the following we consider solutions of the eikonal equation on neighbor-

hoods where the multiplicity is constant. Note that, for any given solution,
there exists such a neighborhood near almost all spacetime points. We begin
our discussion with solutions of multiplicity one, later we consider the some-

what more complicated case of solutions of multiplicity two. We introduce

the following definition.

Definition 2.6.1. Let S be a solution of the eikonal equation according to

Proposition 2.5.1. Assume that, on some open spacetime region U, S is of

multiplicity one, i.e., that the partial eikonal equation (2.76) is satisfied for
A = 1, say, but not for A = 2 at all points of U. Then the vector field

Ka(X) ='OHI X,,gS(X) (2.92)
16Pa (

on U is called the transport vector field and its integral curves are called the

rays associated with S.

In the theory of partial differential equations the rays are also known as

(bi-) characteristic curves.

Owing to (2.83) the transport vector field has no zeros, i.e., the rays

are immersed curves. Changing the partial Hamiltonian according to (2.84)
corresponds to reparametrizing the rays. Please note that

a,,,S(x) K'(x) = 0
. (2.93)

This follows from the fact that H, satisfies equation (2.81) which was a

consequence of the homogeneity property established in Proposition 2.5.2 (a).
Thus, the transport vector field is tangent to the hypersurfaces S = const.

We want to show now that the transport equations can be viewed as

ordinary differential equations along rays. We do that locally around any

point x0 of the neighborhood U mentioned in Definition 2.6.1. To that end we

introduce a coordinate system adapted to the rest system U1 of the medium

near x0. (Please recall Definition 2.1.3.) In such a coordinate system, the

partial Hamiltonians (2.73) take the form

HA(X i P) :--:

1

(hA (X 7 P) +
P4 -) (hA(X7P) - P4 1) , (2.94)

r-2 V 944 (X) V 94;(X)

i.e., the partial eikonal equations (2.76) are equivalent to
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hA (X7 49S(X))
194S

= 0 (2.95)
V' 944 (X)

for A = 1, 2. Here and in the following, the upper sign corresponds to negative
frequency solutions, a4S < 0, and the lower sign corresponds to positive

frequency solutions, 04S > 0. With (2-95) the partial derivative of HA takes

the form

i9HA 194S ah Ja
(x,,OS(x)) - -

- (T
Uf6A

(X, aS(X)) _ --4 (2.96)
OP. N/ 944 (X) ON N/1-944(X)

With these informations at hand, we take a closer look at the Nth order

transport equation, i.e., at equation (2.58) viewed as a differential equation
for zNL and yN with ZN and yN assumed known. In the situation of Defini-

1 11 11
tion 2.6.1, the projection operator PS(x) onto the kernel of 9aS(x) L'(x) is

given, in terms of the eigenvectors UA and vA of (2.66), by

PS(X) U1(x'aS(x))))'3 ( ul(x,as(x)))) (2.97)( V, (X, as(x) V, (X"9s(x)

and ZN and y
N

are necessarily of the form
I I

ZN U1 (X, 09S(X))-L (X)
 N(X) (2.98)

YN(X) V, (x, as(x)

with a C-valued function  N After multiplication with the non-vanishing
factor (94S(X)1944(X), the Nth order transport equation (2.58) reduces to a

differential equation for the function  N of the form

Ka (X) iga6N (X) + f(X) 6N (X) + kN(X) = 0. (2.99)

Here Ka is an abbreviation for

a(X)
84S(X) U, (x, as(x))

a(x) ( U1(x1 aS(X)
K )) -L (2.100)

944(X) ( V1 (X, 19S(X) V, (x, 49S(X) )
and f(x) and kN(x) are known C-valued functions. Clearly, (2.99) gives an

ordinary differential equation for  N along each integral curve of the vector

field Ka. We now show that Ka is, indeed, the transport vector field defined

through (2.92). We first observe that (2.66) implies

UA(XM
-Pa L'(x)

UB(X)P)VA(XiP)) (VB(X7P))
(2.101)

(
(P4 \/--g44(x) hA(X7P)) JAB
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for A, B = 1, 2. Upon differentiation with respect to A, (2.101) yields

UA(XiP)
L

b
(X)

UB (X; P)VA(X7P)) (VB (Xi P))(
UA(X,P) 19 UB (Xi P) ,F-g44(x) (hA(X7P) - hB(X,P)) ( VA(X, P)) .ON (VB(X7P))

b
- 49hA

(J40 V -_944(X)
1OPb

Xi P)) JAB (2.102)(
If we evaluate this equation with A = B = I along p 49S(x), we see that

the right-hand side of (2.100) coincides with the right-hand side of (2.96) for

A = 1. This proves that the vector field Ka in (2.99) is, indeed, the transport
vector field associated with S.

Now let us investigate to what extent these results carry over to the case

of solutions of multiplicity two. In analogy to Definition 2.6.1, we introduce

the following notions.

Definition 2.6.2. Let S be a solution of the eikonal equation according to

Proposition 2.5.1. Assume that, on some open spacetime region U, S is of

multiplicity two, i.e., that the partial eikonal equation (2.76) is satisfied for
A = 1 and A = 2 at all points of U. Then for A = 1 and A = 2 the vector

field

a (X)
allA

KI
ON (X"9S(X)) (2.103)

on U is called the A-transport vector field and its integral curves are called

the A-rays associated with S. We shall also refer to Kl'(x) and K2a(x) as to

the partial transport vector fields associated with S.

For a solution of multiplicity two, Ka1 and K2a may or may not coincide.

(If they are collinear, they can be made equal by a transformation of the

form (2.84).) If the two branches of the characteristic variety coincide, all

solutions are of multiplicity two with Ka
1
= K2a. This is the case for an

isotropic medium where, by (2.87),

Ka(X) = Ka(x) = gab(X),gbS(X)1 2 0 (2.104)

Hence, there is only one congruence of rays associated with each solution of

the eikonal equation in an isotropic medium.

In the anisotropic case we have to live with the situation that solutions

of the eikonal equation might be associated with two different congruences

of rays. Clearly, this makes it more complicated to interpret the transport

equations as ordinary differential equations along rays. We are now going to

work out the details.

In the situation of Definition 2.6.2, (2.97) is to be replaced with



2.6 Discussion of transport equations and the introduction of rays 35

Ps(x) =
2

( UA(X,P) ) 0 ( UA(X,P) ) (2.105)E
A=1 VA(X,P) VA(XiP)

and ZN and yN are of the form
I I

ZN(X) 2
UA (X, IOS(X)) )I

N(X) (2.106)A E U(Y 1,(x
A=l

( VA (X, OS(X)

with two C-valued functions  N and  2N to be determined. Upon multipli-I

cation with the non-vanishing factor a4S(X)1944(X), the transport equation

(2.58) gives a system of two coupled differential equations for  ,N and  2N of

the form

2

Kj(X),9a N(X) +  N(X) N(X)A E fAB (X) B + kA =0, A=1,2. (2.107)
B=1

Here KI is an abbreviation for

194S(X) UA (X, aS(X))  UA (X7 49S(X))
La(X) (2.108)Kj(x) =-

944(X) (VA(X749S(X))] ( VA (Xi 19S(X)) )
for A = 1, 2 and fAB, kN are known C-valued functions. To put the transportA

equation into the form (2.107), we made use of the fact that, by (2.6), our

multiplicity-two solution satisfies

U, (X, i9s(x)) La (X)
U2 (X, 19S(X))

V, (x, as(x))) - (V2(X,19S(X)))
(2.1.09)

(

U2(X,19S(X)))) . L"(X) ( ul(x,as(x))) 0.
 V2 (X, aS(X) V, (X"9s(x) ) =

To verify that the KAa given by (2.108) are, indeed, the partial transport

vector fields defined in (2.103), we consider (2.6) with A = B. This shows

that the right-hand side of (2.108) coincides with the right-hand side of (2.96).
If the two partial transport vector fields coincide, (2.107) gives an ordinary

differential equation for the tuple ( N' 6N ) along the integral curves of Kja1 2

K2a. In the general case, the situation is more complicated. (2.107) with A = I

gives an ordinary differential equation for 6N along the integral curves of
1

Kf that involves 62N, and (2.107) with A = 2 gives an ordinary differential

equation for 6N along the integral curves of K2a that involves 6N2 1 1

We summarize our discussion in the following way. For a solution of the

eikonal equation in a linear dielectric and permeable medium, Definition 2.6.1

gives a transport vector field and, thus, a congruence of rays on open sub-

sets on which the multiplicity is one, and Definition 2.6.2 gives two partial

transport vector fields and, thus, two congruences of rays on open subsets on
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which the multiplicity is two. What is left out is the set of all points where

the multiplicity changes. By continuous extension into such point we might
get pathologies such as bifurcating rays.

Any ray is an integral curve of a vector field KAI given by (2.103) with

A = I and/or A = 2. For any such integral curve s i
) x(s) we can define a

map s i ) p(s) by p(s) = o9S(x(s)), thereby getting a solution of Hamilton's

equations

HA (x(s) , p(s)) = 0
1

  a(S)
OHA

X(s),P(s) (2.110)
ON ) I

Pa(S)
OHA

(X(S),P(S)),gxa

We call any immersed curve s x(s) for which (2.6) is satisfied, with some

s ) p(s), an A-ray for short, A = 1, 2.

If the partial Hamiltonian HA is changed into f1A by a transformation

of the form (2.84), the A-rays undergo a reparametrization but they are

unchanged otherwise. In other words, the A-rays are determined, up to their

parametrization, by the A-branch of the characteristic variety.
In the uniaxial case discussed in Example 2.5.2, the 1-rays are called ordi-

nary rays and the 2-rays are called extraordinary rays. If we solve Hamilton's

equations (2.6) with the partial Hamiltonians given by (2.90), we find that

the ordinary and extraordinary rays are the light-like geodesics of the first

and the second optical metric (2.91), respectively.
In the isotropic case there is only one optical metric and the notions of 1-

rays and 2-rays coincide. By solving Hamilton's equations (2.6) with H1 = H2

given by (2.87), we find that the rays are exactly the light-like geodesics of

the optical metric. This implies, of course, in particular the familiar textbook

result that in vacuum the rays are exactly the light-like geodesics of the

spacetime metric.

2.7 Ray optics as an approximation scheme

From the preceding sections we know that rays are associated with asymptotic
solutions of Maxwell's equations. We are now going to show that they are

associated, moreover, with approximate solutions of Maxwell's equations. For

the physical interpretation of ray optics this is a crucial point.
Let us start with a solution S of the eikonal equation which, in a medium

of the kind under consideration, is given by (2.74) with partial Hamiltonians

(2.73). As always, we assume that S is given on some open neighborhood of

spacetime and that its gradient has no zeros. Moreover, we have to assume in
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the following that S is associated with a unique -congruence of rays. In other

words, we have to assume that either S is a solution of multiplicity one or

that S is a solution of multiplicity two for which the two partial transport

vector fields coincide.

It is our goal to associate such an eikonal function S with an approximate

solution of Maxwell's equations. To that end, we fix a spacetime point and,

on a neighborhood of that point, a coordinate system adapted to the rest

system of the medium in the sense of Definition 2.1.3. We use the inductive

method of Sect. 2.5 to construct an Nth order asymptotic solution

+1

Z(a ) is(x)/Ci N+2) I,x ) =R+ I] am (
/m

(x)) + 0(a (2.111)
Y(a,X)

M=O
ym(x)(

of the evolution equations (2.23), where N can be chosen as large as we want.

This leaves the 0(aN+2) term arbitrary. For any choice of this term, (2.111)
is automatically an N

th order asymptotic solution of the constraints as well.

It is not difficult to check that the 0(aN+2) term can be chosen in such

a way that the constraints are exactly satisfied on the initial hypersurface

X4 = const. These initial values determine a unique exact solution of the

evolution equations (2.23) for each a, thereby giving us a one-parameter

family of exact solutions that will be denoted by Z* (a, Y* (a, Now the

difference

AZ(a, Z(a, Z*(a,
(2.112)

AY(a, Y(a, Y*(a,

satisfies

La i9a + M
AZ(a )) = 0(aN+1) (2.113)) (,6Y(a:

,

)

and vanishes on the initial hypersurface. We have already stressed in Sect. 2.1

that the differential operator on the left-hand side of (2.113) is symmetric

hyperbolic with respect to the scalar product (2.29). Hence, we have the

so-called energy inequalities at our disposal (see, e.g., Theorem 4.3 in Chaz-

arain and Piriou [26] or Theorem 2.63 in Egorov and Shubin [36]). As a

consequence, (2.113) implies the existence of a constant C such that the

inequality

,AZ(a, AZ(a,
< C2C,2(N+I) (2.114)

AY(a, (,AY(a,(
holds on an appropriately chosen (relatively compact) neighborhood. The

constant C can be written as an integral over this spacetime neighborhood

where the integrand involves the (known) tensor fields gab5 Uc) ede, and pfkI

Actually, the energy inequalities allow to estimate AZ and AY not only in
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the pointwise sense as in (2.114) but even in terms of Sobolev norms involving
arbitrarily high derivatives. For our purpose, however, (2.114) will do.

(2.114) can be rewritten in terms of the field strengths

B, E1

B = B2 and E = E2 (2.115)
B3 E3

rather than in terms of our dynamical variables Z and Y. Since the constitu-

tive equations axe linear, and since the dielectricity and permeability tensor

fields can be uniformly estimated on compact subsets of spacetime, we get
an inequality of the form

,AB(a (AB(a', < 02a2(N+I) (2.116)AE(a AE(a

where 0 is another constant. This shows that for a sufficiently small B(a,
and E(a, - ) are arbitrarily close to the exact solution B* (a, - ) and E* (a,
i.e., that our Nth order asymptotic solution is indeed an approximate solution,
recall Figure 2. 1. The higher N, the faster AB(a, and ,AE(a, converge

to zero for a ---> 0.

In physical terms, the possibility to measure electric and magnetic field

strengths is limited by some measuring accuracy J. If a is so small that the

right-hand side of (2.116) is smaller than 62, (2.116) implies that an observer

moving along an x4-line cannot distinguish, by way of measurement, the ap-

proximate solution from the exact solution. It is important to realize that this

is true only for observers moving along an x4-line (or at a small velocity with

respect to the x'-lines). If we exclude the case that approximate solution and

exact solution coincide, we can always find observers, moving at a high veloc-

ity with respect to the xl-lines, who measure an arbitrarily large difference

between them. This follows immediately from the transformation behavior of

electric and magnetic field strength under a Lorentz transformation, given in

any textbook on special relativity. In other words, the question of whether

or not our N
th order asymptotic solution, for some finite value of a, can be

viewed as a valid approximation for some specific exact solution depends on

the observer field with respect to which electric and magnetic field strengths
are to be measured.

A similar observation, based on a different argument, was brought forward

by Mashhoon [921) who only considered light propagation in vacuum. He

came to the conclusion that the equations of general relativistic ray optics
have a meaning only in the limit of infinite frequency but not in the sense of

a physically reasonable approximation for any finite frequency value. We do

not share this radical point of view. Our results show that the ray method

does give a viable approximation scheme for light propagation in a medium

of the kind under consideration in the following sense. Any solution S of

the eikonal equation which is associated with a unique congruence of rays
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can be viewed locally as the eikonal function of an approximate-plane-wave
family that satisfies Maxwell's equations asymptotically to order N. This

was shown in Sect. 2.4 for arbitrary N > 0. Moreover, we can find a one-

parameter family of exact solutions of Maxwell's equations such that the

difference between asymptotic solution and exact solution goes to zero for

a --+ 0 like a
N+1

.
This follows from (2.114) or from the equivalent result

(2.116). We just have to keep in mind that the constant C in (2.114) and the

constant 0 in (2.116) depend on the observer field Ul; it is impossible to find

error bounds that are valid with respect to all observer fields simultaneously.

Having thus associated a congruence of rays with a one-parameter family
of exact solutions of Maxwell's equations F.*b(a, -), it is natural to ask if

the rays are related, at least in the sense of an approximation, to the energy

flux of F.*b(a, .). After all, the intuitive idea behind ray optics is to view

light propagation as a sort of energy transfer along rays. We need some more

calculations to prove that this idea is, indeed, correct for media of the kind

under consideration.

We start again with a solution S of the eikonal equation and assume

that it is associated with a unique congruence of rays. We construct, lo-

cally around any point as outlined above, an approximate-plane-wave family

F,zb(a, -) with eikonal function S and a one-parameter family of exact solu-

tions F*
ab (a, - ) such that (2-114) holds for N = 0 at least. Then the energy

flux of Fa*b(a, in the rest system Ua of the medium is given by

S*a (a, .) = Ub(x) T*ba(a, x) (2.117)

where T*ba(a, is the Minkowski energy-momentum tensor of F,*d (a,

.) -.1 6a F* cd(a, .) .T*ba (a, Fb*c (a, G*ac (a, 4 b cd (ce, G* (2.118)

The component of the energy flux four-vector (2.117) orthogonal to Ua gives
the familiar Poynting vector, whereas the component parallel to Ua gives the

energy density of the electromagnetic field.

In a coordinate system adapted to Ua, in the sense of Definition 2.1.3,

F,*,b and G*,d can be expressed in terms of our dynamical variables ZP* and Yp*
as in (2.22). Then (2.117) takes the form

g44(x) S*a (a, gav(X) no,4v
P (X) V,,,,\ (X) WPI (x) Z,*x (a, Y,* (a,V/ 944

a gar (X)J4a * (a, Z,* (a, + Y,,* (a, Y,* (a, (2.119)(Z,
Since (2.114) holds with N = 0, (2.119) can be rewritten in terms of our

approximate-plane-wave family Zp(a, .), Yp(a, -) in the form

V-g44(x) S*a(a, .) = gav(X)77a P(X)V,,X(X)w4v pl (x) ZA (a, Y,, (a,

I a cr*r

' 649 (x)(Z,(a,.)Z,(a,.)+Y,(a,.)Y,(a,.))+O(a). (2.120)
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Since Zp(a, and Yp(a, are given by (2.50) with No = 0, we have

2iS(x)/a 0
Z,\(a, -) Y,,(a, !Re e Z (X) Y40 (X) + ZOW Y",WI + O(a)2 f A A

(2.121)

Let us denote by < f > (x) the average of a spacetime function f taken

over a neighborhood of x on which the gradient of S and the amplitudes zO)
y.0 can be viewed as approximately constant. (Please recall our discussion of

approximate-plane-wave families in Sect. 2.2.) For a sufficiently small, the

first term on the right-hand side of (2.121) gives an average arbitrarily close

to zero. We may thus write

< Z,\ (a, Y,, (a, > Re{ zOX TO,2 ,1 , (2.122)

where x ;zz y means that the difference between x and V can be made arbi-

trarily small by choosing a sufficiently small. Similar expressions hold for the

averaged products < Z,\ (a, - ) Z,, (a, - ) > and < Y,\ (a, - ) Y,, (a, - ) >. With

these equations at hand, we can calculate the averaged energy flux from

(2.119). If we assume that the background fields (i.e., the spacetime metric

and the tensor fields that characterize the medium) do not vary significantly
over the neighborhood used for the averaging procedure, we find

-2 V--g44 < S*a (C,, . ) > 62 Relzo - APyO1 +
P

(2.123)
5' Relzo . Q YOj + ja (ZO . ZO + YO . YO)4 4

where the 3 x 3 matrices Q and AP from (2.26) and (2.27) are used.

We shall now show that the right-hand side of (2.123) is, indeed, propor-

tional to the transport vector field of our eikonal. function. To that end, we

recall that Z(a, Y(a, -) is an N
th order asymptotic solution of Maxwell's

equations for N 0 at least. Thus, zO and yO have to satisfy the Oth order

polarization condition (2.56). This implies

zow Uj(X,OS(X))
(2.124)

YO (X)) (-Vl (X, as(x)))(
with a C-valued function  O if S is of multiplicity one, and

Z, (X)) =

2

"
W

UA (X  IOS(X)) (2.125)
V'0 (X) E  A (-VA (Xi IOS(X)) )(

A=1

with C-valued functions  10 and  20 if S is of multiplicity two. In the first case

the transport vector field is given by (2.100), and (2.124) implies

Z0) -La (ZO) (2.126)K' = u (Y0 Y0
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with some R-valued function u. In the second case the partial transport vector

fields are given by (2.108). Since we assume that our eikonal equation is

associated with a unique congruence of rays, the two partial transport vector

fields coincide, Kj' = K2' = K', and (2.126) holds in this case as well. With

L' given by (2.25), (2.126) takes the form

a 0 0 0 0)a Relzo - APyOj + 54a Relzo - Q Y01 + 64 (Z .Z +Y .Y2Ka = u (JP
(2.127)

Comparison of (2.123) and (2.127) shows that

< S*a(a, .) > ;Z: vKa (2.128)

with some R-valued function v. In other words, the averaged energy flux of the

exact Maxwell field follows the rays up to terms that can be made arbitrarily
small by choosing a sufficiently small. Please note that we have considered

the energy flux only in the rest system of the medium. This is important

unless in the vacuum case where there is no distinguished rest system of the

medium and (2.128) holds for the energy flux with respect to any observer

field.

With these findings we have completed our discussion of light propagation

in a linear dielectric and permeable medium. In particular, we have now es-

tablished the missing link between asymptotic solutions and approximate so-

lutions. Let us emphasize the main point again. For the mathematical deriva-

tion of eikonal equation and transport equations through a mathematically

well-defined limit procedure it is necessary to consider approximate-plane-

wave families that satisfy Maxwell's equations asymptotically for a --+ 0.

From a physical point of view, however, this limit a --- 0 is a purely formal

device. The physical meaning of the method is in the fact that the result-

ing approximate-plane-wave families give approximate solutions of Maxwell's

equations for (sufficiently small but) finite values of a.
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In Chap. 2 we considered the homogeneous Maxwell equations (2.1) supple-
mented by linear constitutive equations (2.12). This ansatz does, of course,

not cover all sorts of media with relevance to physics. Modifications of the

following kind are possible. First, we could replace ansatz (2.12) with more

complicated relations between field strengths and excitations. Second, we

could introduce a current, i.e., a source term in the second Maxwell equation

(and, similarly, in the first Maxwell equation if the hypothetical existence

of magnetic monopoles is to be taken into account). In the latter case, the

current must be specified by additional equations. E.g., we could assume,

in analogy to (2.12), a linear relation between 3-current and electric field

strength in the rest system of the medium, thereby generalizing Ohm's law.

For any such specification of the medium we can investigate if the resulting

system of equations determines reasonable dynamics for the electromagnetic
field. Here, a dynamical law is to be viewed as "reasonable" if it is governed by

a set of evolution equations characterized by a local existence and uniqueness

theorem. This set of evolution equations might be supplemented by a set

of constraints that are preserved by the evolution equations. If the medium

under consideration gives rise to a dynamical law of this kind, it is reasonable

to proceed along the lines of Chap. 2, i.e., to consider approximate-plane-wave
families (2.33) that satisfy evolution equations and constraints asymptotically
for a --+ 0 to some order N. The passage to ray optics has been achieved if

it is possible to derive, on.this assumption, an eikonal equation of the form

H (x, 9S(x)) = 0, where H can be chosen as a product, H = Hi -
...

- Hk with

each partial Hamiltonian HA, A = k, satisfying condition (2.83) on its

characteristic variety. This guarantees that each solution S of a partial eikonal

equation HA (x,,9S(x)) = 0 is associated with a nowhere vanishing transport

vector field (2.103) whose integral curves give a congruence of A-rays, i.e., of

solutions to Hamilton's equations (2.6) projected to spacetime.
Even if all this works out nicely, it is of course not guaranteed that ray

optics in the medium under consideration can be viewed as a valid approx-

imation scheme for exact Maxwell fields. This has to be checked, along the

lines of Sect. 2.7, in each case individually.

ute
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We are now going to discuss the question of if and how such a treat-

ment of media more general than considered in Chap. 2 is able to cover the

phenomenon of dispersion.

3.1 Methodological remarks on dispersive media

The most important motivation to go beyond the kind of media considered in

Chap. 2 is the following. We have found that the media considered in Chap. 2

are characterized by an eikonal equation of the form H(x, 19S(x)) = 0 where

the Hamiltonian H can be chosen homogeneous with respect to the momenta.

In other words, if a 4-momentum p = (p, I ... 7 N) satisfies the dispersion
relation at some spacetime point x, then any multiple tp = (t pl, - - - It N)
also satisfies the dispersion relation at this spacetime point. Whenever this

homogeneity property is satisfied the medium is called dispersion-free or non-

dispersive; otherwise, it is called dispersive. In a non-dispersive medium, a ray

is fixed by giving an initial event and an initial direction for the spatial wave

covector (with respect to any normalized time-like vector field); in a dispersive

medium, one has to give the length of the spatial covector in addition. This

definition can be rephrased in terms of phase velocities and group velocities to

yield the familiar physics textbook definition of dispersive and non-dispersive

media, see Sect. 6.2 in Part II below.

Hence, we have to ask ourselves what sort of modified ansatz for the

medium could be able to cover the phenomenon of dispersion. This is an

important question not only from a theoretical point of view but also in view

of applications to astropyhsics. Dispersion plays a role for light propagation

in planetary and stellar atmospheres and in interstellar plasma clouds.

A closer look at the treatment of Chap. 2 shows that the following features

are causative for the homogeneity of the eikonal equation.

(a) Evolution equations and constraints give a system of linear differential

equations for the electromagnetic field strength.

(b) The limit a --+ 0 is taken on a fixed background, i.e., neither evolution

equations nor constraints involve the parameter a.

As a matter of fact, it is easy to check that, whenever (a) and (b) are sat-

isfied, the eikonal equation arises in the form H(x, 9S(x)) = 0 where the

Hamiltonian H is a homogeneous polynomial with respect to the momenta.

(Afterwards, we are free to change the Hamiltonian according to transfor-

mations of the form given in (2.84) for H = HA. This leaves, of course, the

homogeneity of the eikonal. equation unchanged.) If we want to treat disper-

sive media we have, thus, to modify the method of Chap. 2 by violating at

least one of the two properties (a) and (b).
The most obvious idea to violate property (a) is to modify the linear con-

stitutive equations (2.12) by adding terms quadratic in the field strengths.
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This is common practice in ordinary optics where it gives rise to interest-

ing effects with relevance to strong electromagnetic wave fields. However, it

is quite evident that such non-linear terms are not typically the origin of

dispersion in crystals, gases, or plasmas. As a matter of fact, dispersion is

frequently observed in situations where the field strengths are far too weak to

make non-linear modifications of the constitutive equations necessary. More-

over, there are several technical problems associated with the ray method if

evolution equations and/or constraints are non-linear. Contrary to the linear

case, our assumption that the approximate-plane-wave family (2.33) satisfies

the differential equations asymptotically cannot be evaluated inductively in

general. The reason is that even in lowest non-trivial order amplitudes f b
with arbitrarily large N may show up, i.e., we do not get an eikonal equation
for S alone. In other words, in a non-linear medium the propagation of wave

surfaces in the high frequency limit and, thus, the corresponding propaga-

tion of rays depends on the amplitudes of the wave fields. In this sense, there

is no self-contained theory of ray optics for such media. To be sure, there

are some non-linear equations that do give an eikonal equation for S alone.

This is true, in particular, of semi-linear equations, i.e., of equations which

are linear in the highest order derivatives of the dynamical variables (field

strengths) with coefficients independent of these variables. However, for the

inductive method of determining the amplitudes f, b to carry over we need

nothing less than linearity. For this reason, only in the linear case is it pos-

sible to check, along the lines of Sect. 2.7, whether or not ray optics gives a

viable approximation scheme.

It is worthwile to mention another problem with non-linear equations.

Suppose we know that some approximate-plane-wave family (2.33) stays close

to exact solutions, for 0 < a < ao, within some given error bounds. Then it

is still possible that a generalized Fourier integral (2.40), formed with this

family over a real interval [a,, a2l 9 [0, ao], deviates from all exact solutions

by an arbitrarily large amount. In this sense, studying approximate-plane-

wave families of the form (2.33) is of limited usefulness in a non-linear medium

since it gives no information on non-monochromatic waves.

These arguments show that it is somewhat problematic to apply the ray

method to non-linear differential equations. As a matter of fact, the existing

literature on this topic is much more "heuristic" than in the linear case.

A typical reference is the book by Jeffrey and Kawahara, [66] where many

applications to physics are mentioned. Those applications refer mainly to

fluid mechanics where nonlinear effects are more important than in optics. In

our context, the following strategy is advisable. When dealing with a medium

for electromagnetic fields that gives non-linear evolution equations and/or
non-linear constraints, it is reasonable to linearize these equations around

a ("background") solution and to apply the ray method to the linearized

equations. The resulting theory is valid for all wave fields which are sufficiently

weak such that their self-interactions, caused by the non-linearities of the
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full equations, can be ignored. Interactions with the background field are, of

course, taken into account.

Following this line of thought, the only possibility to treat dispersive me-

dia is by violating the above-mentioned property (b). At first sight, the idea

to smuggle the parameter a into the differential equations seems alien to op-

tics. (This is a major difference to the JWKB method in wave mechanics. In

the latter case, the role of a is played by Planck's constant A which, evidently,

appears in Schr6dinger's equation.) Nonetheless, there is a sound method of

achieving this goal. Strictly speaking, this method comes in various different

variants. The common feature is that one considers asymptotic behavior of

approximate-plane-wave families on a one-parameter family of background

geometries, rather than on a fixed background geometry. Circumstances per-

mitted, this gives an eikonal equation (and transport equations) in close anal-

ogy to the treatment of Chap. 2. The crucial point is that even in the case of

linear differential equations the eikonal equation need not be homogeneous
with respect to c9S, i.e., dispersion is not excluded. The physical meaning of

an eikonal equation derived that way depends, of course, on the way in which

the background geometries depend on the parameter. In the following section

we demonstrate the method by way of a special example.

3.2 Light propagation in a non-magnetized plasma

In this section we consider a simple plasma model as a medium for electro-

magnetic waves and we perform the passage to ray optics in such a way that

dispersion is taken into account. Apart from some modifications, our treat-

ment follows Breuer and Ehlers [181 [19]. For earlier references on the same

subject we refer to Madore [90], to Bi66k and Hadrava [14] and to Anile and

Pantano [5] [6].
We restrict ourselves to the most simple plasma model, viz., to a two-fluid

model with vanishing pressure. Then the dynamical system to be considered

is governed by the equations

(3.1)0,o9[,,Fb,

VbF
ab
= ja +en Ua (3.2)

M Ub VbUa = eF' Ub (3.3)b

V,, (n Ua) 0 (3.4)

gab UaUb _1 (3.5)

(3.1) and (3.2) are the Maxwell equations for the electromagnetic field

strength tensor Fab, where square brackets around indices mean antisym-
metrization. In (3.2), the ionic current is denoted by ja, whereas the elec-

tronic current is written as the product of electron charge e, electron particle
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density n, and electron 4-velocity U'. In mathematical terms, e is a nega-

tive constant, n is a nonnegative scalar function, and U1 is a vector field

normalized by (3.5).
(3.3) is the equation of motion for the electron fluid (Euler equation plus

Lorentz force), where m is a positive constant with the meaning of the electron

mass. Here we assume, as already mentioned, that the pressure of the electron

fluid vanishes. This is a legitimate approximation as long as the plasma is

sufficiently cold.

(3.4) is the equation of charge conservation of the electron component.

Please note that (3.2) already implies conservation of the total charge,

V. (JI + e n U') = 0, but not of the electron component alone.

We want to view (3.1)-(3.5) as a system of non-linear first order differen-

tial equations for Fab, n and U1 with the metric gab and the ionic current ja

assumed known. Viewed in this sense, (3.1)-(3.5) give us 4+4+4+ 1 + 1 = 14

component equations for 6 +1+ 4 = 11 unknown functions. In a local coordi-

nate system with time-like x'-Iines and space-like hypersurfaces X4 = const.

our 14 equations split up into 11 evolution equations and 3 constraints. It is

easy to verify that the evolution equations preserve the constraints. More-

over, Breuer and Ehlers [181 were able to show that the system of evolution

equations admits a locally well-posed initial value problem, and that the

equations (3.1)-(3.5) are linearization stable. The latter property guarantees

that solutions of the linearized equations are close to solutions of the full

equations, i.e., that linearization gives a meaningful approximation.

This is of particular relevance for us since, following the strategy out-

lined in Sect. 3.1, we are now going to linearize (3.1)-(3.5) around some

("background") solution. For simplicity we restrict ourselves to the case of

a background solution with vanishing electromagnetic field. In other words,

our background solution is given by a nonnegative scalar function On and a

0

vector field U1 that satisfy the following set of equations.

0

0 = ja 0 Ua
,

+en (3.6)

0b
0

U 'VbU' = 0, (3.7)

Va (no
0

(3.8)Ua) 0

0

a

0

b
gab U U -1 (3.9)

Now we linearize the equations (3.1)-(3.5) around this background solution,

i.e., we consider these equations for perturbed fields

Fab =0+.Pab 1 (3.10)
0

n n + ft

0

Ua Ua + Ua, (3.12)
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and we drop all terms of second and higher order with respect to the perturba-
tions Fabi fti U. The resulting equations govern the dynamics of sufficiently

0

weak electromagnetic waves -Pab in our plasma which, according to Fab  0)
is assumed non-magnetized. We shall presuppose that the metric gab and the

ionic current ja are unperturbed. The first assumption is in agreement with

our general stipulation to work on a fixed metric background, i.e., to disre-

gard the back-reaction, governed by Einstein's field equations, of matter and

electromagnetic fields on the metric. The second assumption means that the

effect of the electromagnetic wave on the ions is ignored. This is a reasonable

approximation since the inertia of the ions is much bigger than that of the

electrons. On these assumptions, the linearized system of equations for the

perturbations takes the following form.

i9[aFbc] := 0
1 (3.13)

Vbfiiab = e On 6,a + eA UOa, (3.14)
0 0

M Ub &a + M 6rb a Ub (3.15)Vb VbUa e--P
b

Va(no &a +A
0

(3.16)Ua) 0,

&a (jb = 0.gab U (3.17)

0
0

With gab, n and Ua known, (3.13)-(3.17) is a system of first order linear

differential equations for -Pab, fi and 6ra. It is our goal to find dynamical

equations for -Pab alone, i.e., to eliminate ft and (ja. This is indeed possible

provided that the background density On has no zeros,

0

n > 0
, (3.18)

in the spacetime region considered. If this condition is satisfied, we can pro-

ceed in the following way.

From (3.14) we find, with the help of (3.9) and (3.17),

0

e ft Ua Vb-Pab (3.19)

0

(e ja Pcb (ja +
"a 0

A = Vb
C

U UC) (3.20)

Since we can divide by no, (3.20) can be used to eliminate 6ra from (3.15).
This results in the following linear second order differential equation for -Pab:

0 0

Ub(ja + U0a cd
0

b(ja +
0

a

'

") + Vc
0

a) cd
-

C Uc) VbVd-P + (Vb U C
U U U VdP

e2 0
0

b ^a-AU Fb =0-
M

(3.21)
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If we have a solution -Pab of (3.13) and (3.21), we can define ft and &a by
(3.19) and (3.20), respectively. It is easy to check that then the full system
of equations (3.13)-(3.17) is satisfied. In other words, we have reduced this

system (3.13)-(3.17) to dynamical equations for Pab alone, given by (3.13)
and (3.21).

To rewrite (3.13) and (3-21) in a more convenient form, we express -Pab
in terms of a potential Aa,

Pab '--: 0[aAb] "-- V[aAbj (3.22)

and we assume thatAa satisfies the Landau gauge condition in the rest system

of the background electron fluid,

Aa Ua  - 0 (3.23)

It is a standard exercise in Maxwell theory to verify that any antisymmetric
tensor field -Pab that satisfies (3.13) can be locally represented in this way, and

that Aa is (locally) uniquely determined by Pab up to gauge transformations

A,, Aa + 49ah (3.24)

0

where h is any spacetime function that is constant along the flow lines of Ua.

In other words, h can be freely prescribed on a hypersurface transverse to

those flow lines.

With (3.22), (3.13) is automatically satisfied and (3.21) takes the form

E)afAf = 0 (3-25)

where the differential operator Daf is defined by

0

b (ja +
0

a

0

_ gfcVdE)afAf = U
C

U U,)Vb(VfVc Vd)Af +

0

b(p +
"

a

0

c) + Vc
0

a) (VfVc _ gfcVd(VbU c
U U U Vd)Af -

e
20 (OfVa _gafob

;;T n
U U Vb)Af (3.26)

(3.25) determines the dynamics of electromagnetic waves in our plasma.

(3.25) consists of four component equations, but only three of them are in-

dependent since the equation

0

Ua'DafAf = 0 (3.27)

is identically satisfied for any Af. By the Landau gauge condition (3.23), Af
has three independent components. Hence, we have as many equations as

unknown functions. In this sense, (3.25) gives a determined system of linear

third order differential equations for the electromagnetic potential. To make
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this explicit, one can choose, on an appropriate open subset of spacetime, an

0

orthonormal tetrad field El, E2, E3, E4 with E4' = U'. By (3.23), Af isofthe

form Af = gfkAA Ek with some scalar functionsAl, A2, A3 on that domain.
A

Multiplication of (3.25) with ga, El', gives us three equations (numbered by
2 3

it = 1, 2, 3) for the three functions Al, A
,
A

.
It is shown in Breuer and

Ehlers [18] [19] that this system of linear differential equations admits a local
0 0 0

existence and uniqueness theorem for any data AA, Ua OaAll, Ua Ub iaaabA"
prescribed on a space-like hypersurface.

Viewed in this sense, (3.25) is the system of evolution equations for elec-

tromagnetic waves in our plasma. Those evolution equations are of second

order in the field strengths, and they are not supplemented by constraints.

They are, thus, quite different from the evolution equations (2.23) in a linear

dielectric and permeable medium. Unfortunately, (3.25) is not of the kind for

which standard theorems guarantee the validity of energy inequalities.
With the dynamical law (3.25) at hand, we can now perform the passage

to ray optics. Since it is our goal to take dispersion into account, we proceed
in a way different from Chap. 2. As outlined in Sect. 3.1, it will be crucial to

consider one-parameter families of background fields rather than fixed back-

ground fields. The background fields that enter into the differential operator

-Daf are the metric gab, the electron number density n" and the electron 4-

0

velocity Ua. Let us fix such a set of background fields which have to satisfy

(3.6)-(3.9) and (3.18). Further, let us fix a spacetime point and a coordinate

system around this point. We assume that the chosen point is represented
1 2 3 4

by the coordinates xo = (xO' X0 , X0, xO) and that the considered coordinate

domain is star-shaped with respect to xo in R4. The latter condition means

that for any point x in this domain the straight line between x and xO is com-

pletely contained in this domain. Refering to this fixed coordinate system,

we define new background fields, depending on a real parameter,8, by

gab (0, X) = gab (XO + 0(X - XO)) , (3.28)

n A
0

P, X) =
,

(XO +Nx - XO)) , (3.29)
0 0

Ua (0, X) = Ua (X, + 0(X - X())) . (3.30)

0

For 0 < 6 < 1, the new background fields gab (,3 1 nO(,8, and U' (,3, are

well defined on the star-shaped domain considered, and they satisfy again

equations (3.6)-(3.9) and condition (3.18). (This observation does not carry
0

over if an electromagnetic background field Fab -'A 0 is to be taken into

account. For a magnetized plasma, one cannot assume the same,3-dependence
0 0

afor all background fields gab) on) U,and Fab-)
For,3 --+ 0, the components of the background fields become constant in

the coordinate system under consideration. In this sense, gab(O, )) nO(O, *)
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0

and U'(0, are homogeneous fields. In particular, gab(O -) is a flat metric
0

and Ua(O' is covariantly constant, i.e., an inertial system, with respect
to this metric. For this reason, we shall refer to the limit '3 --+ 0 as to the

homogeneous background limit.

Ua byIf we replace in (3.2) the original background fields gab, on and
0

9ab(6, .), AO(3, -) and
0

.), respectively, we get a one-parameter familyUa(O'
of differential operators E)af (,J, - ). It is our plan to enter into the differential

equation E)af (0, .)Af (0, -) = 0 with an approximate-plane-wave ansatz for

the potential Af(A - ). Hence, we consider two-parameter families of the form

Af (a,fl, x) = (3.31)

2 Re e's(xO+,O(x-xO))Ia af (a, xo +,3(x - xo));7 f I
which satisfy the Landau gauge condition

0

Of (3, x) Af (a, 13, x) = 0
. (3.32)

We assume that the complex amplitudes are of the form

No+1

eif (a aN( -)a
N
+ O(CNo+2 (3.33)f

N=O

for all integers No > -I and that

Fab(a, 0, X) '-- 19[aAb] (a,,3) x) = (3.34)

ReIei S(xo+o(x-xo))/Ci i (49[aS 60b]) (XO + 0(X - XO)) + 0(a) I
is an approximate-plane-wave family, in the sense of Sect. 2.2, for any fixed

with 0 < 0 < 1. For an approximate plane wave in this family, the frequency
function with respect to the background electron rest system (3.30) is then

given by

w(a,O,x) = (3.35)
0

Ua (XO +,3(X - X0)) j9aS(XO + O(X - X0))
OZ

To perform the passage to ray optics, we have to assume that our approximate-

plane-wave family satisfies the dynamical equations asymptotically. Since we

have two parameters a and 3 at our disposal, we can consider asymptotic

behavior with respect to different kinds of limits.

The first possibility is to keep 3 fixed and to consider the condition

2,T)af p,lim Af (a,,3, 0 (3.36)
a--+O C,
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for N E Z. This is essentially the same kind of limit as considered in Chap. 2.

It can be characterized as the high frequency limit on a fixed background. In

the case at hand, the lowest non-trivial order is N = -3. We leave it to the

reader to compute from (3.36) with N = -3 that the resulting eikonal equa,

tion equals the vacuum eikonal equation in the background metric gab ('37 - ))
i.e., that the corresponding rays are exactly the light-like geodesics of this

background metric. In other words, if the high-frequency limit is taken on

a fixed background, the plasma has no influence on the rays. In particular,
there is no dispersion. (If this kind of limit is to be considered, one can, of

course, stick to the case,3 = 1 throughout, i.e., there is no need to introduce

the parameter,3 at all.)
Now we want to consider a different kind of limit, namely to let 0 and a

go to zero simultaneously with the quotient 2 kept fixed. We can then simply

put a =,3 and consider the condition

lim _iDaf (a, .)Af(a, a, 0 (3.37)'W
a-0
G

for N E Z. Keeping -;' fixed implies that the frequency function (3.35) is kept
fixed at the point xO. Therefore, this kind of limit can be characterized as

the homogeneous background limit with fixed frequency at xO. We shall now

prove that this limit gives, indeed, a different eikonal equation. To that end,

we have to assume that (3.37) holds in lowest non-trivial order which is now

given by N = 0. This is true if and only if the equation

V'4 = 0 (3.38)

holds at xO, where Qaf is an abbreviation for

Qaf (3.39)
0 0

ub
0

ca SafS + 6f adSg S + jf e209bS(-1QaS09fS-UaU C a d a M
n

Here we have used the equation

0

Uf (XO) ao (XO) := 0 (3.40)f

which follows from the Landau gauge condition (3.32). Since (3.34) is sup-

posed to be an approximate-plane-wave family, 6.0 must be non-zero and
f

linearly independent of 9fS. The condition that (3.38) admits a solution &.0
f

of this kind at x,, gives the desired eikonal equation at xO for S. We have, thus,

to solve the eigenvalue problem of Qaf restricted to the orthocomplement of

0

Uf. We find that there are three real eigenvalues, viz.

0

b (0 c S)2 + ,2 o)U 19bS Uac
m
n (3.41)

0b 9dS19 S+ e2 0

A2 A3 = U ObS ( d
M n) (3.42)
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0
2

If either U',ObS = 0 or a,,,S =  6., all three eigenvalues coincide
M

and (3.38) is satisfied by any M. Otherwise, we find Al 7 A2 = A3- In the
f

latter case, the eigenspace pertaining to Al is one-dimensional and spanned
0 0

by OfS + Uf UbgbS whereas the eigenspace pertaining to /\2 = /\3 is two-
0

dimensional and consists of all Xf with Uf Xf = afSXf = 0.

Equation (3.38) admits a non-trivial solution aO which is perpendicularf
0

to Uf if and only if one of the eigenvalues A,, A2) A3 is zero. From the form

of the eigenspaces we see that in any such case aO can be chosen linearlyf

independent of 49fS. Hence, the eikonal equation takes the form Al A2 A3 = 0

which is equivalent to

0

b (oc S)2 + e2 o

ac (adSgdS + E2 0

0U 19bS U
m n) m

n (3.43)

Let us be precise about this result. Our assumption that the asymptotic
condition (3.37) holds in lowest non-trivial order requires that S satisfies

(3.43) at the point xo around which the construction was done.

Although we have used a fixed coordinate system around the chosen space-

time point to perform the homogeneous background limit, the eikonal equa-

tion is a covariant equation (i.e., independent of this coordinate system). If

S satisfies this covariant equation (3.43) on an open spacetime domain U,
it is associated with an asymptotic solution of lowest non-trivial order, in

the homogeneous-background sense, around any point of U. That is to say,

to any such S we can find a non-trivial amplitude tif (a, - ) on U such that

the following holds. If we choose any coordinate system around any point of

U, thereby defining the one-parameter family of operators DIf (0, - ) and the

two-parameter family (3.31) of electromagnetic fields, the asymptotic condi-

tion (3.37) is satisfied for N = 0. As a matter of fact, a similar statement is

true for any N. However, this more general result does not follow from our

reasoning so far.

Owing to the terms proportional to no, the eikonal equation (3.43) is not

homogeneous with respect to o9S. This indicates dispersion.
The product structure of the eikonal equation (3.43) suggests to introduce

three partial Hamiltonians

&b (X)Hl(x,p) = U A (3.44)
0

2

( Ua(X) Ub(x)
0

(X))H2 (x, p) PaPb +
11 (3.45)

2 M
n

H3(xI P) 9ab (X) PaA + e2n(X) (3.46)
2 ( M

Our assumptions guarantee that each partial Hamiltonian satisfies condition

(2.83) on its characteristic variety. We are, of course, free to change each

partial Hamiltonian by a transformation of the form (2.84).



54 3. Light propagation in other kinds of media

The three partial Hamiltonians determine three branches of the dispersion
relation. The branches defined by H2 and H3 have an intersection given by

0

,(x). At all points of phase space where thisthe equation p,, U
?n

equation does not hold, at most one of the three partial dispersion relations

can be satisfied. (This is true as long as our assumption (3.18) is valid.)
In analogy to Chap. 2 we assign to each solution S of the partial eikonal

equation.

HA(x,o9S(x))=O, A=1,2,3, (3.47)

a (partial) transport vector field K' defined by

K'(x) =
allA

(X, i9s(x)) . (3.48)
.9p.

The integral curves of K' are, again, called the (A-)rays associated with S.

The totality of all A-rays, associated with any solution of (3.47), is found by

solving Hamilton's equations (2.6) for A = 1, 2,3, respectively.
It is worthwile to mention that this definition associates a unique con-

gruence of rays to each solution S of the full eikonal equation (3.43). This

can be verified in the following way. In almost all cases, a solution of the

full eikonal equation satisfies exactly one of the three partial eikonal equa-

tions (3.47). The only exception occurs if, at some point x, the equation

19aSW Vfe--2 -. (X)
,,,  (x) &,,,(x) holds such that (3.47) is satisfied for A = 2
Yn

and for A 3 simultaneously. At such points we have two partial transport

vectors, given by (3-48) with A = 2 and with A = 3, respectively. Luck-

ily enough, we find from (3.45) and (3.46) that these two partial transport

vectors coincide.

Let us consider the three partial Hamiltonians one by one. Solutions of

the partial eikonal equation (3.47) with A = 1 are pathological insofar as they

have vanishing frequency in the background rest system of the electron fluid,
0 0

U1(x)o9,,S(x) = 0. Hence, Ua is not an "admissible reference system" for

the approximate-plane-wave interpretation. The transport vector field (3.48)
associated with such a solution is given by

0

Ka(X) = Ua(x), (3.49)

0

i.e, the rays are the integral curves of Ua
.
Note that H, OS( 0 implies

that the eigenvalues (3.41) and (3.42) coincide, /\1 = /\2 = /\3 0, and that

equation (3.38) is identically satisfied for all ao. In other words, the amplitude
f

fto [a49b]S is not restricted by any polarization condition.
ab
= '&0

For a solution of the second partial eikonal equation H2 (x,.9S(x)) = 0

the frequency function with respect to the background rest system of the

electron fluid is determined by the equation
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0

U,WMW = WPW , (3.50)

where Lo,, denotes the plasma frequency defined by

2

WP(X)2 =
e o

(x) .

M

n (3.51)

For the transport vector field (3.48) associated with such a solution S we find

0

Ka(X) = WP(X) Ua (X) (3.52)

0

such that the rays coincide, again, with the integral curves of Ua. (Please
0

recall that the parametrization of rays is arbitrary.) The case o9aS wp Ua

plays a special role since in this case S satisfies the partial eikonal equa-

tion (3.47) not only for A = 2 but also for A = 3. For this special solution

we have again A, = A2 = A3 and, thus, no polarization condition of Oth

order. For all other solutions of H2 (x, aS(x)) = 0, (3.38) requires that Mf
is in the eigenspace pertaining to the eigenvalue Al given by (3.41), i.e.,

0 0

that 6,0 is a multiple of o9f S + Uf U' 9,S. This condition implies that the
f

0 Ubelectric component of iab = ia0[ai9bjS with respect to

0

is a linear com-

0

bination Of Ua and OaS and that the corresponding magnetic component

vanishes. This is tantamount to a longitudinal polarization condition in the

sense that the electric field strength is parallel to the spatial wave covector,
0 0 0

i.e.,
^0 Ub = U(,gaS + UbabSUa) with some real-valued function u. Thosefab

longitudinal modes described by the partial Hamiltonian H2 are known as

plasma oscillations.

Now let us turn to the third partial Hamiltonian H3. For A = 3, formula

(3.48) yields the same expression for the transport vector field as in vacuum,

viz.

Ka (X) = gab(X),gbS(X) (3.53)

Using our assumption that On has no zeros, we find that the 3-rays (i.e., the

rays determined by the partial Hamiltonian H3) are exactly the time-like

geodesics of the metric w
2
gab which is conformally equivalent to gab. The

P

easiest way to verify this result is by changing H3 according to

H3(x,p) = I (gab(X) PaA + WP(X)2 (3.54)
2 ) b

1 1 ab
H3 (X) P)

WP (X)2
Iff3 (X, A

WP (X)2 9 (X) PaA +
2

Since this transformation is of the form_(2.84), it leaves the rays unchanged up

to reparametrization, i.e., we can use H3 instead of H3 for the determination
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ofthe 3-rays. Solving Hamilton's equations (2.6) with this transformed Hamil-

tonian gives, of course, the time-like geodesics of the conformally resealed
2metric ab  W; gab parametrized by ab-proper time.

To further analyze the third partial Hamiltonian we consider a solution S
0

of H3 OS( 0 but exclude the case 49aS wp Ua which was already
considered above. Then (3.38) requires that 6.0 is in the eigenspace pertainingf

to the eigenvalue X2 = X3 given by (3.42), i.e., that 6,0 satisfies the condition
f

ao afs = 0 (3.55)f

in addition to the Landau gauge condition aO Uf = 0. This is tantamount to a
f

transverse polarization condition for the oth order amplitude
 0

- i 0 Obl Sfab - [a
in the following sense. (3.55) and the Landau gauge condition imply that the

0

electric and magnetic components of f0ab with respect to U' are perpendicular
o

UbaaS = 0 and 0abcd U OaS = 0. Byto the gradient of S, i.e., that faO b icoab cd

(3.53), this implies that the electric and magnetic components of the oth order

amplitude are perpendicular to the rays.

From this analysis of the three partial Hamiltonians we see that, for trans-

verse modes with non-zero frequency, the eikonal equation reduces to the form

2

,gaS(X) 19aS(X) +
e

O(X) = 0.
M

n (3.56)

i.e., to the partial eikonal equation determined by H3. On a flat spacetime,
the eikonal equation (3.56) is discussed in any textbook on plasma physics,

see, e.g., Stix [134]. On a curved spacetime, it was derived, with increasing

rigor, by Madore [90], Bi66k and Hadrava [14], Anile and Pantano, [5] [6] and
Breuer and Ehlers [18] [19].

If we consider the limit no --+ 0 we reobtain the familiar eikonal equation

for light propagation in vacuum from (3.56). (Note that this is not the case

for the partial eikonal equation (3.47) with A = 1 or A = 2.) It is, thus,

admissible to consider (3.56) for any spacetime function no which is non-

negative (but not necessarily strictly positive). Spacetime regions on which
0

A > 0 are to be interpreted as occupied by a plasma whereas spacetime regions

on which A" = 0 are to be interpreted as vacuum. To stick with our general

stipulations, we assume that no is a C' function everywhere. We can then

find (CI) solutions S of (3.56) which give us wave surfaces traveling partly

through vacuum and partly through plasma clouds. An analogous treatment

based on H, or H2 rather than on H3 is impossible. This indicates that Hi

and H2 have nothing to do with electromagnetic waves passing through our

plasma. (A full discussion of this topic requires replacing our C' condition

with a piecewise C' condition and deriving junction conditions for aaS and

for the amplitudes &,N from the asymptotic condition (3.37). We shall not
f

embark upon such an investigation here.)
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It is, therefore, justified to concentrate the discussion of light propagation
in our plasma on the partial Hamiltonian H3. Using the eikonal. equation

(3.56) and the Oth order polarization condition (3.55) as the starting point,

we could now go on to evaluate (3.37) inductively for N = 1, 2, 3 etc. This

would result in transport equations and polarization conditions for the am-

6Nplitudes f
of arbitrarily high order. We leave it to the reader to verify that,

proceeding along the lines of Sect. 2.4, this hierarchy of equations can be

solved inductively to construct solutions of the asymptotic condition (3.37)
for arbitrarily large N. Unfortunately, it is a difficult problem, apparently
unsolved so far, to prove that those asymptotic solutions are approximate
solutions as well. The method of Sect. 2.7 does not carry over since the dif-

ferential equation (3.25) is not of the kind for which energy inequalities are

known to hold true. Therefore, it is hard to see how the difference between

our asymptotic solutions and appropriate exact solutions could be estimated.

If such error estimates do exist, they are, of course, quite different depending

on which sort of limit is considered. For the homogeneous background limit

with fixed frequency considered here, the error bounds must go to zero if

Ua become homogeneous. In other words,the background fields gab7 no and
o

our asymptotic solutions yield good approximations if the background fields

are sufficiently homogeneous. Clearly, this is not necessarily the case if the

high-frequency limit on a fixed background is considered. Either limit yields

a reasonable eikonal equation, reasonable transport equations and reason-

able polarization conditions. The difference is in the range of validity as an

approximation scheme for exact electromagnetic wave fields (providing this

validity can be established, in terms of error estimates, at all).
From the results of this section we can draw the following lesson. The

eikonal equation for light propagation in a plasma does not only depend on

the plasma model (two-fluid model, infinite inertia of the ion component, van-

ishing pressure of the electron component, linearization around background
with vanishing electromagnetic field, etc.); it also depends on the kind of

asymptotic limit considered. For the high frequency limit on a fixed back-

ground, the eikonal equation is exactly the same as for light propagation in

vacuum, i.e., there is no effect of the plasma on the rays. For the homogeneous

background limit with fixed frequency, on the other hand, the eikonal equa-

tion is given by (3.43), i.e., there is an effect of the plasma on the rays which

causes, in particular, dispersion. Although the eikonal. equation (3.43) has

a product structure associated with three partial Hamiltonians, one should

not speak of "multiple refraction" in this case. The reason is that only the

transverse modes described by H3 can be linked to solutions of the vacuum

eikonal equation in the way indicated above. In other words, rays that enter

into our plasma from an adjacent vacuum region have to proceed as 3-rays,

i.e., they are not multiply refracted. In a magnetized plasma, however, the

background electromagnetic field causes the branch of the dispersion relation

associated with H3 to split into two branches. Then the medium becomes
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double-refractive. On a special-relativistic background this is a standard re-

sult of plasma physics. For a general-relativistic treatment of this case we

refer to Breuer and Ehlers (18] [19].
In addition to the high frequency limit on a fixed background and the

homogeneous background limit with fixed frequency there are many other

possibilities. To mention just one further example, we could modify ansatz

(3.28)-(3.30) by assuming a different scaling behavior for the one-parameter

family of background fields. In this way it is possible to derive, e.g., an eikonal

equation such that the rays are directly affected by the rotation of the back-
0

ground rest system U1. An eikonal equation of this kind was brought forward

by Heintzmann and SchrUer [61], based on earlier work by Heintzmann,
Kundt and Lasota [601 in the context of special relativity. For each eikonal

equation derived that way, the range of validity as an approximation scheme

(if any) must be checked individually.



4. Introduction to Part II

In Part II we treat ray optics as a theory in its own right. In Chap. 5 we

presuppose an arbitrary finite-dimensional manifold M and set up a Hamil-

tonian formalism for ray optics in the cotangent bundle over M. In Chap. 6

we assume that, in addition, a Lorentzian metric is given on M. Specialized
to the case dim(M) = 4, (M, g) can then be interpreted as a spacetime in

the sense of general relativity and our formalism covers ray optics in arbi-

trary media on such a spacetime. This procedure has the advantage that the

results of Chap. 5 apply equally well to spacetime theories other than general

relativity and to the case that M is to be interpreted as space, rather than as

spacetime, in any kind of theory where such a notion makes sense. Chapter 7

will then be devoted to variational principles for rays and Chap. 8 presents

applications of the general formalism to astrophysics and astronomy.

The results of Part I will often be used for the sake of motivation, and

they will provide us with illustrative examples. However, the mathematical

formalism developed in Part II is completely self-contained.

4.1 A brief guide to the literature

In the following we make extensive use of Hamiltonian formalism. For the

most part we use coordinate free notation since it is our goal to also treat

some global questions. We assume that the reader is familiar with differential

calculus and with symplectic geometry as it is used in the modern treatment

of classical mechanics. Our standard reference for background material is the

textbook by Abraham and Marsden [1]. In addition, we also refer to Arnold

[8) and to Woodhouse [150]. More particularly in view of optics, it might
be helpful to consult the textbook by Guillemin and Sternberg [551 where

applications of the Hamiltonian formalism and of symplectic geometry to

optics are given in modern mathematical terminology. In traditional notation,

applications of the Hamiltonian formalism to optics can be found, e.g., in

the classical work of Carath6odory [25] and of Luneburg [88) [89). Readers

interested in the historical roots of "Hamiltonian optics" should go back

to the original work of Sir William Rowan Hamilton who established this

formalism in the 1820s, see vol. 1 of the collected papers of Hamilton edited by

Conway and Synge [29]. Next to the work of Hamilton, the most fundamental

ute
V. Perlick: LNPm 61, pp. 61 - 65, 2000
© Springer-Verlag Berlin Heidelberg 2000
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contribution to the mathematical theory of ray optics is due to Bruns [23]
who introduced the socalled eikonal function. The relation of Bruns's eikonal

function to Hamilton's characteristic function is controversially discussed in

articles by Herzberger [631 and Synge [1391.
Textbooks on general relativity do not usually treat ray optics in detail.

Most of them are restricted to light propagation in vacuo where the light rays

are just the light-like geodesics of the spacetime metric. An important excep-

tion to this rule is the book by Synge [142] where a Hamiltonian formalism

for ray optics in isotropic media is discussed in some detail. It is worthwile

to compare this to earlier work on ray optics by the same author, see Synge

[1381 [1401 [141]. More recent work by Miron and Kawaguchi [97], also see

Kawaguchi and Miron [68] [69], is strongly influenced by ideas of Synge but

uses a more modern mathematical terminology. It is the main purpose of

their work to develop a differential geometric formalism for light propagation
in isotropic dispersive media. Miron and Kawaguchi repeatedly claim that

standard symplectic geometry does not provide an appropriate framework

for the treatment of such media. We do not share this point of view
.

Having set up a Hamiltonian formalism for general-relativistic ray optics,
the way is paved for characterizing rays by a variational principle. Some of

these variational principles can be interpreted as general-relativistic versions

of Fermat's principle. The oldest versions, which hold for vacuum rays in

static or stationary spacetimes, date back to Weyl [149] and Levi-Civita [81].
Related material can be found in Levi-Civita [80) [82] [83] and Synge [137].
(The reader is cautioned that the latter paper does not meet the standard of

Synge's later work.) These versions of Fermat's principle are also discussed in

several modern textbooks and review articles, see, e.g., Frankel [43] or Strau-

mann [136] for the static case and Landau and Lifshitz [761 or Brill [211 for

the stationary case. For a discussion from a mathematical point of view we

refer to Masiello [931. Generalizations from vacuum to an isotropic medium,
but still assuming stationarity, were first considered by Pham Mau Quan

[116] [117] [118] [119]. On the other hand, Uhlenbeck [144] found the first

variational principle for (vacuum) light rays in general-relativistic spacetimes
without symmetries. Whereas for the work of Uhlenbeck it was crucial that

the spacetime be globally hyperbolic, Kovner [741 was able to formulate a

Fermat principle for vacuum light rays in an arbitrary Lorentzian manifold.

A rigorous proof that the solution curves of Kovner's variational principle

are, indeed, the light-like geodesics was given in Perlick [108]. Kovner's vari-

ational principle was further discussed, both from a physical and from a

mathematical point of view, e.g., by Faraoni [42], Nityananda and Samuel

[1011, Schneider, Ehlers and Falco [1281, Bel and Martfn [12], Perlick [110]
and in several articles by Giannoni, Masiello and Piccione, see, e.g., Giannoni

and Masiello [46] or Giannoni, Masiello and Piccione [47] [48].
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4.2 Assumptions and notations

Throughout Part II we presuppose a finite-dimensional real C"O manifold M

whose topology satisfies Hausdorff's axiom and the second axiom of countabil-

ity. This implies that M is paracompact. The terms "manifold" and "sub-

manifold" always mean manifold and submanifold without boundary. The

physical interpretation we have in mind refers to M as to a spacetime model

in the sense of general relativity. However, for the basic concepts of ray optics,

to be introduced and discussed in Chap. 5, we need no additional structure

on M and n = dim(M) need not be specified. In Chap. 6 we shall assume

that there is a C1 Lorentzian metric g given on M, whereas n = dim(M)
will still be an unspecified positive integer except for the restriction that, in

Chap. 6, we assume n > 2 to exclude some pathologies. In all applications to

relativity we use units making, the vacuum velocity c of light equal to one.

At a point q E M, we denote the tangent space by TM and its dual,
the cotangent space, by Tq*M. The tangent bundle will be denoted by

,rm: TM ) M and the cotangent bundle by -r.) : T*M ) M. It will

often be necessary to remove the zero section from TM and from T*M;
0 0

what is left will be denoted by TM and T*M, respectively.

By a "Lorentzian metric" we always mean a covariant symmetric second

rank tensor field with signature (...... +, -). With respect to a Lorentzian

metric g, a linear subspace of the tangent space TM is called space-like if

on this subspace the metric g is positive definite, light-like if it is positive

semidefinite but not positive definite, and time-like otherwise. A vector X E

TqM is called space-like, light-like, or time-like whenever the linear subspace

spanned by this vector has the respective property. As a consequence, X is

space-like if X = 0 or g(X, X) > 0, light-like if X : 0 and g(X, X) = 0, and

time-like if g(X, X) < 0. If X is space-like, light-like, or time-like, the same

property is assigned to the covector g(X, .). Finally, a submanifold of M is

called space-like, light-like, or time-like whenever its tangent space has the

respective property at all points.
With a Lorentzian metric (or, more generally, a pseudo-Riemannian met-

ric of any signature) on M there is associated its Levi-Civita connection V.

This defines the notions of parallel transport and of geodesics. By a geodesic

we always mean a map A: I ) M from a real interval into M such that

V  is parallel to k Such a curve is called an affinely parametrized geodesic

if, more specifically, the equation VA = 0 is satisfied.

We assume that the reader is familiar with exterior calculus. As to the

definition of antisymmetric tensor product, exterior derivative, etc., our sign

and factor conventions follow Abraham and Marsden [1]. Whenever refering

to a local chart (xl,... I Xn) on M, we use Einstein's summation convention

with latin indices running from 1 to n and greek indices running from I to

n - 1. With respect to such a local chart, elements of TM can be represented

in the form vaalaxa, and elements of T*M can be represented in the form
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p,,dx'. In this way we get a local chart (x...... x vl,..., v') on TM, and a

local chart (xl.... I xn, pi, - - -, p.) on T*M- Following Abraham and Marsden

[1) we refer to charts constructed in this way as natural charts induced by
(XI, . . . , x'). It is also usual to refer to the va as to velocity coordinates and

to the Pa as to momentum coordinates conjugate to the x". Occasionally we
also refer to elements of TM as to velocity vectors and to elements of T*M

as to momentum covectors.

It is well known and easily verified that there is a (unique and globally
well-defined) one-form 0 on T*M such that 0 = padxa in any natural chart.

0 is known as the canonical one-form on T*M. It can be characterized in a

coordinate-free manner as the unique one-form on T*M such that 3*0 =,a
for all C' sections 0: M ) T*M, see Abraham and Marsden [1], p. 179.

(Here,,3*0 denotes the pull-back of 0 with,3.) The two-form Q -dO, which

is known as the canonical two-form on T*M, takes the form Q dxa Adpa in

any natural chart. More generally, any chart on T*M in which Q takes this

special form is called a canonical chart. It is obvious that 0 is closed (i.e.,
dQ = 0) and non-degenerate (i.e., the equation Q(X, -) = 0 implies X = 0).
Hence, S? makes T*M into a symplectic manifold The restrictions of 0 and

0

f2 to T*M will again be denoted by 0 and S? for the sake of simplicity.
S? can be used to assign to each C' function H: T*M R a Hamil-

tonian vector field XH on T*M by the formula

Q(XH, -) = dH. (4.1)

The non-degeneracy of f2 guarantees that the assignment H i  XH iS2

indeed, well defined. In a natural chart, the Hamiltonian vector field XH

takes the form

XH =

aH 0
_

aH a
(4.2)

ON 19xa 19xa '9N
'

A C' curve  : I T*M, defined on a real interval 1, is called a solution

of Hamilton's equations iff it is an integral curve of the Hamiltonian vector

field XH, i.e., iff

(4.3)

for all s E 1. If  is represented in a natural chart as a map s 1 ) (x(s), p(s)),
(4.3) takes the familiar canonical form of Hamilton's equations

.ta(s) =
'9'

(4.4)
159Pa (X(S)'P('

pa(s) = -

OH

(X(s), p(s)) . (4.5)
axa

Equation (4.4), which gives the velocity coordinates as functions of the po-

sition and momentum coordinates, is properly called the vertical part of
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Hamilton's equations since it corresponds to equation (4.3) applied to vec-

tors tangent to the fibers of T*M. If (4.4) can be solved for the momentum

coordinates p, the result can be inserted into (4.5). This leaves us with a

set of second order equations for the position coordinates x1. Locally around

some point u E T*M, (4.4) can be solved for the momentum coordinates p,,

if and only if the condition

ab) -det(H  0 (4-6)

holds at u. Here and in the following, we use the abbreviations

aH
ab
=

a2H
Ha -

ON
,
H

aPaaPb'
etc. (4.7)

A Hamiltonian H that satisfies (4.6) at u is called regular or non-degenerate

at u. (It is easy to check that (4.6) holds in any natural chart if it holds in

just one natural chart.) Hence, locally Hamilton's equations can be viewed

as a system of second order differential equations on M if and only if H is

everywhere regular.
To express regularity in invariant notation, without refering to a natural

chart, one introduces the fiber derivative of a function H: T*M .) R in

the following way. For q E M, we denote the restriction of H to T,*M by

Hq; then, for each u E Tq*M, the differential (dHq)u: Tq*M ) R being a

linear map can be viewed as an element of (Tq*M)* '- TqM. The fiber deriva,

tive FH: T*M ) TM of H is defined by the equation (FH)(u) = (dHq)u
where q = -r) (u). Using natural charts on T*M and TM, induced by one

and the same chart x = (x1, . . . , x') on M, the fiber derivative takes the form

(x, p) i ) (x, v = 9H1,9p). With the help of the map FH the vertical part of

Hamilton's equations (4.3) can be written in the form (-r 4 o  )* = FH o  ,

where the ring denotes composition of maps and the dot stands for derivative

with respect to the curve parameter. Hence the desired invariant characteriza-

tion of regularity can be given in the following way. A Hamiltonian is regular

at a point u E T*M if and only if its fiber derivative FH maps a neighborhood

of u diffeomorphically onto an open subset of TM. If FH: T*M TM is

even a global diffeomorphism, H is called hyperregular.
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on arbitrary manifolds

In Part I we have seen that the fundamental object on which all of ray

optics can be based is a dispersion relation, i.e., a characteristic variety in

a cotangent bundle. We make this into the general definition of ray optical
structures on our arbitrary n-dimensional manifold.

5.1 Definition and basic properties
of ray-optical structures

When we performed the passage from Maxwell's equations to ray optics in

Part I, the characteristic variety came about as the zero-level surface of a

Hamiltonian function H, where H was a smooth function on the punctured

cotangent bundle whose derivative with respect to the momentum coordi-

nates had no zeros. It is therefore natural to define a ray-optical structure

on our arbitrary n-dimensional manifold M as a closed codimension-one sub-
0

manifold N of T*M which is everywhere transverse to the fibers. If we add

the condition that JV covers all points of M, we are led to the following

definition which is fundamental for all of Part II.

Definition 5.1.1. A ray-optical structure on M is a (2n - I)-dimensional
0

closed embedded C' submanifold M of T*M such that r) JAr: JV M is

a su7jective submersion.

Here -r) JAr denotes the restriction of the bundle projection -r.L : T*M

M to Ar. The condition of -r,14 I.Ar being a submersion guarantees that A( is

0

transverse to the fibers of T*M, whereas the condition of -r.) JAr being surjec-

tive guarantees that X covers all of M. Both conditions together imply that
0

the set Arq = Ar n T,*M is a codimension-one submanifold of the punctured
0 0

cotangent space T*M for all q E M. As Ar is closed in T*M, so is Arq in
q

0

Tq*M. Note that, for two different points q and q', the manifolds Arq and JVq,
are not necessarily diffeomorphic. In particular, Ar need not be a fiber bundle

over M. This will be exemplified below.

ute
V. Perlick: LNPm 61, pp. 67 - 109, 2000
© Springer-Verlag Berlin Heidelberg 2000
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According to Definition 5.1.1, A( need not be closed in T*M and its

closure in T*M might fail to be a smooth manifold at the zero section.

In view of the examples we have in mind, it is indeed necessary to keep
Definition 5.1.1 as general as that. In particular, we do not want to exclude

the case that Ar is the null cone bundle of a Lorentzian metric.

If A(l and Ar2 are two ray-optical structures on M with Ar, n A(2 = 0,
then Ar = A(, U A(2 is again a ray-optical structure on M. Conversely, each

connected component of a ray-optical structure is a ray-optical structure in

its own right.

Ray-optical structures that come about as level surfaces of Hamiltonian

functions are characterized by the following proposition.

0

Proposition 5.1.1. Fix a C' function H: T*M R and let Ar be the
0

zero-level surface of H, i.e., A( u E T*M I H(u) = 0 Then A( is a ray-

optical structure on M, provided that H satisfies the following two properties.

0

(a) For all q E M, the set Xq u E T*M I H(u) = 0 1 is non-empty.
q

(b) For all u E M, the fiber derivative of H satisfies (FH)(u)  -' 0.

Proof. Condition (a) guarantees that the map -r) jjv is surjective. Condition

(b), which is the coordinate-free way of saying that the derivative of H with

respect to the momentum coordinates has no zeros, guarantees that X is a

0

closed embedded codimension-one submanifold of T*M and that -r, 41j\r is a

submersion. 0

0

T*q

Fig. 5 - 1. For the ray-optical structure of Example 5.1
- 1, JV, is the null cone of the

metric g,, at each point q E M.
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A ray-optical structure need not be generated globally by a function H in

this way. In general, such a function H exists only locally. (Later in this sec-

tion we shall investigate this question in more detail.) Insofar, Definition 5.1.1

applies to situations more general than those encountered in Part I. Such a

generalization seems to be reasonable since the treatment of Part I was local

throughout.
Next we mention some examples of ray-optical structures. They will serve

as our standard examples for the discussion of all properties of ray-optical
structures. Therefore the reader is requested to commit them to his or her

memory.

Example 5. 1. 1. Let go be a C' Lorentzian metric on M and denote the

induced fiber metric on T*M by g:O. (In other words, if the components
0

of go are denoted by (go)ab, the components of g# are given by gab with
0 0

0

(go)ac good = jd.) Define H: T*M R by H(u) = .1 gO (u, u) , i.e.,
a 2 0

H(x,p) = .1 gab (X) PaPb (5.1)
2 0

0

in terms of natural coordinates. Then Ar u E T*M I H(u) = 0 1 is a

ray-optical structure on M.

For the case dim(M) = 4 this example admits several different interpre-

tations on the basis of general relativity. The first possibility is to interpret go

as the spacetime metric such that Ar gives light propagation in vacuum. The

second possibility is to interpret go as the optical metric (2.88) in a linear

dielectric and permeable medium which is isotropic. The third possibility is

to interpret go as one of the two optical metrics (2.91) in a linear dielectric

and permeable medium which is anisotropic with the special features typ-

ical of a uniaxial crystal. In the latter case it is important to realize that,

in general, the two optical metrics must be treated separately; the union of

the two "light cone bundles" is not a ray-optical structure in the sense of

Definition 5.1.1 unless they are disjoint.
We should keep in mind that Example 5. 1 .1 is not general enough to cover

light propagation in arbitrary linear dielectric and permeable media. Accord-

ing to Sect. 2.5 this would require a generalization to Finslerian metrics.

Here is another example of a ray-optical structure.

Example 5.1.2. Let go and g# be as in Example 5.1.1 and define a function
0

H: T*M R by H(u) (g# (u, u) + 1), i.e.,
2 0

H(x,p) = .1 (gab (X)Pa Pb + 1) (5.2)
2 0

0

in terms of natural coordinates. Then X u E T*M I H(u) = 0 1 is a

ray-optical structure on M.
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<;   IVq
JVq

0

T*Mq 0

Fig. 5.2. For the ray-optical structure of Example 5.1.2, Arq is a two-shell hyper-
boloid at each point q E M.

According to Chap. 3, light propagation in a non-magnetized plasma is

given by a ray-optical structure of this sort, generated by the (partial) Hamil-

tonian (3.46). Here we have to put g,, =
2
g' where is the spacetime metricW 9

and wp is the plasma frequency (3.51), and we have to restrict ourselves to

regions where wp has no zeros.

Example 5.1.1 and Example 5.1.2 are special cases of the following more

general construction. Let g be a C' Lorentzian metric on M and denote

the induced fiber metric on T*M by g#. Fix a COO function h: M R
0

and define H: T*M R by H(u) (g# (u, u) + h(-r, 4 (u)) ). Then
2

0

Ar u E T*M I H(u) 0 1 is a ray-optical structure on M -
In regions

where h vanishes this leads us back to Example 5.1.1 with g,, = g. In re-

gions where h is strictly positive this leads us back to Example 5.1.2 with

g,, = hg. This generalized example has relevance for light propagation in

a non-magnetized plasma which occupies only part of the spacetime region
considered. Mathematically it exemplifies our earlier remark that, for an ar-

bitrary ray-optical structure JV on M, the manifolds Arq and Arq, need not

be diffeomorphic. for two points q and q' in M. If h(q) = 0 and h(q') > 0, Arq
is a double cone whereas Arq, is a two-shell hyperboloid, i.e., Ar. and Arq, are

not even homeomorphic, let alone diffeomorphic .

We now turn to a different kind of examples for ray-optical structures.

Example 5.1.3. Fix a C' vector field U on M that has no zeros and define
0 0

a function H: T*M R by H(u) = u(Uq) for all q E M and U E T*M,
q

i.e.,

H(x, p) = Ua (X) Pa (5.3)
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0

in terms of natural coordinates. Then the set JV U E T*M I H(u) = 0

is a ray-optical structure on M.

In our discussion of light propagation in a non-magnetized plasma we

encountered the (partial) Hamiltonian (3.44) which generates a ray-optical
structure of this sort. This example will be useful in the following to demon-

strate some possible pathologies.

Example 5.1.3 admits the following generalization which is mathemati-

cally interesting although somewhat contrived in view of physical applica-
tions. Instead of a COO vector field U without zeros, it suffices to have a C'

line field L, i.e., a map that assigns to each point q C- M a one-dimensional

subspace Lq of the tangent space TqM. Then we define Arq as the set of all
0

covectors in T*M that annihilate all vectors in Lq. It is easy to check that

Ar = I u E Arq I q E M I is indeed a ray-optical structure on M. If L is not

globally spanned by a C' vector field without zeros, this ray-optical struc-

ture M is not globally generated by a Hamiltonian function, i.e., it is not of

the kind considered in Proposition 5.1.1.

T*,M
0

/__77
0 Arq

0 Ar. T*qM 0A j

(a) (b)

Fig. 5.3. For the ray-optical structure of Example 5.1.3, Arq is a punctured hyper-

plane (a), whereas for Example 5.1.4 it is a pair of hyperplanes (b).

The following example is related to Example 5.1.3 in a similar way as

Example 5.1.2 is related to Example 5.1-1.

Example 5.1-4. Let U be a COO vector field on M that has no zeros and
0

=
1 (U(U )2 _ 1)define a function H: T*M R by H(u) 2 q

for all points
0

q E M and for all covectors U E T*M, i.e.,
q

H(x, p) .1 (Ua(X) Ub(X)Pa Pb 1 (5.4)
2

0

in terms of natural coordinates. Then the set X u E T*M I H(u) = 0

is a ray-optical structure on M.
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The partial Hamiltonian (3.45), which determines the plasma oscillations

in a non-magnetized plasma, generates a ray-optical structure of this kind.
0

Here we have to divide the vector field U of (3.45) by the plasma frequency

w2,, given by (3.51), to get the vector field U, and we have to restrict to

regions where the plasma frequency has no zeros.

0

T*A
q

Fig. 5.4. For the ray-optical structure of Example 5.1.5, Arq is a sphere.

Finally, we mention an example that has no physical relevance if M is

interpreted as a spacetime manifold. However, it is the most important ex-

ample of a ray-optical structure if M is interpreted as space, e.g., in ordinaxy
optics or in a static general-relativistic spacetime. In the latter context, we

shall examine this example in more detail in Sect. 6.5 below.

Example 5.1.5. Let g+ be a C' (positive definite) Riemannian metric on M

and denote the induced fiber metric on T*M by go. Define a Hamiltonian
0

H: T*M R by H(u) 1(go (u u) - 1), i.e.,
2 + I

H(x, p) .1 (gab2 + PaPb - 1) (5.5)

0

in terms of natural coordinates. Then JV u E T*M I H(u) 0 1 is a

ray-optical structure on M.

This ends our list of examples to which we shall come back frequently.
It is now our goal to justify the term "ray-optical structure" by showing

that, indeed, any such structure gives rise to the notions of rays. If X is a

0

ray-optical structure on M, we can use the inclusion map i: X T*M to

pull back the canonical one-form 0 and the canonical two-form S? to Ar. The

resulting forms will be denoted by

OAr = i*O and QAr = i*Q. (5.6)
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Since the exterior derivative d commutes with the pull-back operation i*,

these two forms are related by the equation flAr = dOV. In particular, this

implies that QV is a closed two-form, dS?Ar = 0. Moreover, at each point

U E A( the kernel of S?,v is one-dimensional since Q is non-degenerate and

JV has codimension one. This shows that (Ar, S?Ar) is a contact manifold, see

Abraham and Marsden [1], Definition 5.1.4.

A vector field X on Ar is called a characteristic vector field iff it satisfies

the equation Qv(X, - ) = 0. As the kernel of S?,v is one-dimensional, any two

characteristic vector fields are linearly dependent. Integral curves of charac-

teristic vector fields (or their projections to M) are often called characteristic

curves. They give us the rays of JV, according to the following definition.

Definition 5.1.2. Let JV be a ray-optical structure on M and let PAr be the

contact two-form on Ar defined by (5.6). A C1 immersion  : I JV from

a real interval I into JV is called a lifted ray iff

(PAO (s) ( (S), - ) = 0 (5.7)

for all s E 1. Then the projected curve -r, 4 o  : I M is called a ray.

Clearly, lifted rays satisfy the following existence and (non-)uniqueness

properties.

(a) A lifted ray remains a lifted ray under an arbitrary reparametrization

(which need not be orientation-preserving).

(b) Through each point u E JV there is a lifted ray, and it is unique up to

reparametrization and extension.

Moreover, it is important to realize that a lifted ray is nowhere tangent to a

fiber of T*M. (This follows from the fact that A( is everywhere transverse

to the fibers.) Hence, every ray is an immersed curve in M. In other words,

"rays do not stand still in M".

In the case of Example 5.1.1 the rays are the light-like geodesics of the

metric g,, whereas in the case of Example 5.1.2 they are the time-like geodesics

of the metric g,,. In the case of Example 5.1.3 and 5.1.4 an immersed curve

in M is a ray iff it is an integral curve of the vector field U. In the case of

Example 5.1.5 the rays are the immersed geodesics of the metric g+.

It follows immediately from the definitions that two ray-optical structures

on M are equal if and only if they determine the same set of lifted rays. How-

ever, it is very well possible for two different ray-optical structures to have

the same rays. As an example we may consider a ray-optical structure con-

structed from a (positive definite) Riemannian metric g+ as in Example 5.1.5

such that the rays are the geodesics of the metric g+. If we change g+ by

multiplication with a positive constant c: 0 1 we get a different ray-optical

structure but the set of rays remains unchanged. This is obvious since g+ and

cg+ have the same Levi-Civita connection.
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So far our notion of rays made no use of Hamiltonian functions. To cast the

ray equation (5.7) into Hamiltonian form we need the following proposition
which can be viewed as the converse of Proposition 5.1.1.

Proposition 5.1.2. Let A( be a ray-optical structure on M and fix a point
0

u E Ar. Then there is an open neighborhood W of u in T*M and a C'

function H: W ) R with the following properties.

(a) ArnW = jw E W I H(w) = 01
(b) dH has no zeros on Ar n W.

Any such function H is called a local Hamiltonian for M. H is called a global
Hamiltonian for Ar if all of Ar is covered by )/V, i.e., if Ar C W.

Proof. This is an immediate consequence of the fact that, by Definition 5. 1. 1,
JV is an embedded codimension-one C' submanifold of T*M. n

Later we shall give criteria for the existence of global Hamiltonians, see

Proposition 5.1.4 below.

We shall now rewrite the ray equation (5.7) in Hamiltonian form. To begin

with, let us consider the special case of a ray-optical structure./V on M that

admits a global Hamiltonian H: W ) R and let us denote the Hamiltonian

vector field of H by XH. Then, at all points U E Ar, the vector (XH)u is

non-zero and tangent to Ar. Hence, XHjAr gives a nowhere vanishing vector

field on JV. If the defining equation (4.1) of XH is pulled back to JV, we find

S?Ar (XH IM i ') = 0, i.e., XH jAr is a characteristic vector field. Thus, any other

characteristic vector field on X must be a multiple Of XHjAr. This implies
that an immersion  : I ) M is a lifted ray if and only if its tangent field

is everywhere a multiple of XH. Thus, lifted rays  are characterized by the

equations

H 0
, (5.8)

( (s), k(s) (dH) (s) 7 (5.9)

where k is a nowhere vanishing but otherwise arbitrary function. The freedom

to choose this function at will corresponds to the fact that lifted rays can be

arbitrarily reparametrized.
If H is a local rather than a global Hamiltonian, this result remains true

on that part ofX which is covered by W. This implies that, with respect to

a natural chart and a local Hamiltonian, lifted rays are characterized by the

equations
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H (x(s), p(s)) = 0, (5.10)

J.0(s) k(s)
"

(x(s),p(s)) , P_-

P,,(s) -k(s)
"

(x(s),p(s)) (5.12)
,gxa

These considerations can be summarized in the following way. If we are lucky

enough to have a global Hamiltonian H for JV, the lifted rays of Ar can be

found by (i) solving Hamilton's equations with this function H; (ii) singling

out those solutions that lie in Ar; (iii) allowing for arbitrary reparametriza-

tions. If there is no global Hamiltonian, the same procedure can be carried

through on the domain of each local Hamiltonian. On the mutual overlaps of

those domains the lifted rays have to be patched up.

Rom a geometrical point of view it is quite satisfactory to work with the

contact manifold (A(, S?Ar) without refering to Hamiltonians. On the other

hand, the use of (local) Hamiltonians leads to a formalism that looks more

familiar to physicists. For that reason we will often refer to Hamiltonians.

We end this section with two propositions that are helpful when working

with local Hamiltonians. The first proposition clarifies the relation between

two local Hamiltonians for one and the same ray-optical structure, the second

proposition gives criteria for the existence of a global Hamiltonian.

Proposition 5.1.3. Let JV be a ray-optical structure on M and assume that

the COO function H: W R is a local Hamiltonian for Af, defined on

0

some open subset W of T*M with Ar n W : - 0. Then another C' function
0

fl: W R, defined on the same open subset W of T*M, is again a local

Hamiltonian for Ar if and only if there is a C' function F: W ) R \ 10}
such that the equation ft = FH holds on W. (By continuity, the function F

must be either everywhere positive or everywhere negative.)

Proof. Since the "if' part is trivial, we just have to prove the "only if' part.

So let us assume that both H and ft are local Hamiltonians for Ar. Then

Fo(u) = ft(u)JH(u) defines a C' function Fo: W \ A ) R \ 101 since

both H and H are non-zero on W \ Ar. As dH and dH have no zeros on

jV n W, the Bernoulli-I'Mpital rule guarantees that F0 has a continuous

extension F: W ) R \ 101. At a point u E JV n W, the value of F is given

by F(u) = (df1)u(X)/(dH)u(X), where X is any vector in Tu(T*M) which

is non-tangential to X. What remains to be shown is that at all points of

A( n W the function F is, indeed, of class Cr for all r E N. This can be

verified by induction over r where again the Bernoulli-l'Mpital rule has to

be applied. 11

Proposition 5.1.4. Let Ar be a my-optical structure on M. Then the fol-

lowing properties are mutually equivalent.
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(a) X admits a global Hamiltonian H.

(b) There is a nowhere vanishing characteristic C' vector field X on X.

(C) There is a nowhere vanishing C' one-form,3 on M such that the char-

acteristic direction on X is transverse to the kernel of 3 at all points of
X.

(d) Ar is orientable, i.e., there is a nowhere vanishing C' (2n - 1)-form
on Ar.

Proof. The implication "(a)=>-(b)" is trivial since we can choose X = XHJ'V.
To prove the implication "(b)=*(c)" we put a C' (positive definite) Rieman-

nian metric g+ on X. Such a metric exists since X is a finite-dimensional

paracompact manifold; for a proof of this well-known fact see Proposi-
tion 2.5.13 in Abraham and Marsden [1]. Then 3 = g+(X, -) will do the

job. To prove the implication "(c)=>(d)" we can put E = 0 A (f2Ar)(n-1)'
where (Q.'V)(n-1) = QAr A ... A QAr with (n - 1) factors on the right-hand
side. Finally, we prove the implication "(d)=*(a)". By assumption, A( is an

0

orientable codimension-one submanifold of T*M. We choose an orientation
0

for Ar and put a (positive definite) C' Riemannian metric G+ on T*M. (The
existence of such a metric is guaranteed by the same argument as above.) This

defines an outward unit normal vector at each point u E M. Let t i ) 0(u, t)
denote the affinely parametrized G+-geodesic tangent to this unit vector at

t = 0. Then a. global Hamiltonian H: VV ) R for A( is well-defined on some

neighborhood W of Ar by setting H(w) = t if and only if there is a u E Ar

such that w = O(u, t). 1:1

Rom this proposition we should keep in mind, in particular, that ori-

entability of JV is equivalent to the existence of a global Hamiltonian. We

are thus in agreement with usual terminology if we define the choice of an

orientation for Ar in the following way.

Definition 5.1.3. An orientation for a ray-optical structure A( is an equiv-
alence class [H] of global Hamiltonians for JV. Here two global Hamiltonians

for A( are called equivalent if they are related, according to Proposition 5.1.3,

by a positive function F. After an orientation [H] for Ar has been chosen,
the parametrization of a lifted ray is called positively oriented if (5.9) holds

with a positive function k for any H E [H].

5.2 Regularity notions for ray-optical structures

In Proposition 5.1.3 we have seen that two local Hamiltonians H and fl for

one and the same ray-optical structure are related, on their common domain

of definition, by an equation of the form AI = FH where F is a nowhere

vanishing function. As a consequence, their derivatives with respect to the

momentum coordinates in any natural chart have to satisfy the equations
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a
= F Ha and flab = F Hab + Fa Hb + Fb Ha (5.13)

on JV, where the abbreviations (4.7) have been used for the functions H,

fl, and F. This implies, in particular, that the usual regularity condition

(4.6) cannot be satisfied at a point u E Af by all Hamiltonians for N. If this

regularity condition is satisfied by one Hamiltonian for JV it can always be

spoiled by switching to another Hamiltonian with the help of an appropriate

function F, according to (5.13). Therefore we define regularity of ray-optical
structures in the following way.

Definition 5.2.1. A ray-optical structure JV on M is called regular at a

point u E A( if there is a local Hamiltonian H for Ar, defined on some neigh-

borhood W of u, such that the fiber derivative FH of H maps A( n W dif-
0

feomorphically onto its image in TM. This is true if and only if H satisfies

condition (4.6) at u in any natural chart. A my-optical structure X on M

is called hyperregular if there is a global Hamiltonian H for)v such that the
0

fiber derivative FH of H maps A( difleomorphically onto its image in TM.

If we take a look at our five examples of ray-optical structures mentioned

above, we find that Example 5.1.1, Example 5.1.2 and Example 5.1.5 give

hyperregular ray-optical structures. In each of these cases the fiber derivative
0 0

of the given Hamiltonian is a global diffeomorphism FH: T*M TM.

The ray-optical structures of Example 5.1.3 and Example 5.1.4, on the other

hand, axe nowhere regular, provided that dim(M) > 2. It is easy to check

that on a two-dimensional manifold all ray-optical structures are everywhere

regular.
The best strategy to verify results of this kind is the following. To find out

whether a ray-optical structure Ar is regular at some point u E Ar, we choose

a local Hamiltonian H and a natural chart around u. As before, we use the

abbreviations (4.7). If det(Hab(U)) =A 0, it is obvious that JV is regular at u.

If det(Hab(U)) = 0, we consider the second-order polynomial

U(X1'...' Xn) = det(Hab(U) + Ha(U) Xb + Xa Hb(U)). (5.14)P

.... Xn) = 0 isIf this is the zero polynomial, i.e., if the equation P, (X1,
satisfied by all (X1,...' X') E Rn, we know that Ar cannot be regular at u.

This follows immediately from the fact that any other local Hamiltonian ft for

M must be related to H by the transformation formulae (5.13). If, on the other

hand, there is an (Xl,..., X") E Rn with Pu(Xl,..., Xn) : - 0, Ar must be

regular at u. In order to prove this we switch to a new Hamiltonian ft = FH,

choosing the function F in such a way that F(u) = 1 and F'(u) = X1. Then

we can read from (5.14) that det(fl'b(u)) is equal to Pu(Xl,..., X") which,

by assumption, is different from zero.

If JV is regular at u, an appropriate choice of a Hamiltonian near u gives us

a local one-to-one correspondence between momentum covectors and velocity
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vectors. It is clear that a ray-optical structure alone, without choosing a par-

ticular Hamiltonian, cannot give such a correspondence since lifted rays can

be arbitrarily reparametrized. Under such a reparametrization the momen-

tum covectors remain unchanged whereas the velocity vectors are multiplied
by a scalar factor. This observation suggests a different regularity notion

for ray-optical structures. We want to call a ray-optical structure "strongly
regular" if it gives a local one-to-one correspondence between momentum

covectors and directions of velocity vectors. To make this precise we consider

the vertical part of the ray equation together with the dispersion relation in

a natural chart, i.e., the equations (5.10) and (5.11). The desired local one-

to-one correspondence holds if and only if this system of equations can be

solved for the momentum coordinates p1(s),...,A,,(s) and for the stretching
factor k(s). This solvability condition can be written in the form

det ( (Hab) (Ha) ) 54 0 (5.15)
(Hb) 0

where a is an index numbering rows and b is an index numbering columns

such that we get an (n + 1) x (n + 1) matrix on the left-hand side of (5-15).
With the help of (5.13) it is easy to check that (5.15) is, indeed, independent
of the Hamiltonian chosen. Switching back to coordinate-free notation, this

leads to the following definition.

Definition 5.2.2. A ray-optical structure Ar on M is called strongly regular
at a point u E Ar if for one and hence for any Hamiltonian H: W R,

0

defined on a sufficiently small neighborhood W of u in T*M, the map

CH: Ar n W x R+ TM defined by

9H(Wi C) = c]FH(w) (5.16)

is a diffeomorphism onto its image. This is the case if and only if in any

natural chart condition (5.15) holds at u. A ray-optical structure Ar on M is

called strongly hyperregular if there is a global Hamiltonian H for Ar such

that the map CH: X x R+ ) TM defined by (5.16) is a diffeomorphism
onto its image. Here FH denotes the fiber der1vative of H and R+ denotes

the set of strictly positive real numbers.

Strong regularity is easier to check than regularity; we just have to calcu-

late the left-hand side of (5.15) with any Hamiltonian for Ar.

If we look at our standard examples, we find that Example 5.1.2 and Ex-

ample 5.1.5 give strongly hyperregular ray-optical structures. On the other

hand, Example 5.1.1 gives ray-optical structures which are nowhere strongly
regular. The same is true of Example 5.1.3 and Example 5.1.4 if we exclude

the trivial case dim(M) = 1. This shows that strong regularity is violated

for several physically interesting ray-optical structures on spacetimes. (In the
next section we shall see that a ray-optical structure that describes light
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propagation in a non-dispersive medium on a spacetime cannot be strongly

regular.) Nonetheless strong regularity is a physically useful notion, in partic-

ular in the case that M is to be interpreted as space rather than as spacetime.

We have not yet justified our terminology by showing that, indeed, strong

regularity implies regularity. This follows from the next proposition.

Proposition 5.2.1. A ray-optical structure,,V on M is strongly regular at

a point u E A( if and only if there exists a local Hamiltonian H for A( on

some neighborhood of u such that in any natural chart

(a) det (Hab) :A 0 and

b
-(b) Hab H' H  0

at u. Here we use again the abbreviations (4.7) and Hab is defined through

HabHbe
= jc.

Proof. The "if' part is a trivial exercise in linear algebra. To prove the "only

if' part, we assume that JV is strongly regular at u and fix a local Hamiltonian

H for A( on a neighborhood 1YV of u. If H satisfies (a) we are done since in this

case, by (5.15), (b) is also satisfied. So let us assume that H does not satisfy

(a). It is our goal to find another Hamiltonian H FH for X such that (a)

and, thus, (b) are satisfied if H is replaced with As, by assumption, the

kernel of the matrix (Hab) is non-trivial, our strong regularity assumption

(5.15) guarantees existence and uniqueness of a vertical vector nb,0/0pb at

u which satisfies Hab nb = 0 and Hbnb = 1. If W is sufficiently small, the

function ft = H(H + 1): W ) R is, again, a local Hamiltonian for JV. It

is our goal to prove that the kernel of the matrix (ftab) = (Hab + 2Ha Hb)
is trivial. So let us assume that ftab yb = 0. We want to demonstrate that

this implies Yb = 0. As Ha na = 1, Yb can be decomposed in the form Yb =

Hb Zb ftab y =Zb + c nb where = 0. Then our assumption takes the form b

Hab Zb + 2 cHa = 0. Owing to our strong regularity assumption this implies

that the column vector with components Z1, . . . , Z1, 2 c is in the kernel of a

matrix with non-zero determinant; hence, all these components are zero. 13

This proposition shows that, at the level of local Hamiltonians, our strong

regularity notion is equivalent to the so-called Condition N introduced by

Guckenheimer (53].
For further illustrating strong regularity we introduce the following nota-

tion.

Definition 5.2.3. Let Ar be a ray-optical structure on M. For any q E M,

the set

Cq  (O) I A is a ray with X(0) = q (5.17)

is called the infinitesimal light cone of JV at q. The set

C = I X E Cq I q E M 1 (5.18)

is called the bundle of infinitesimal light cones of JV.
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Here we allow ourselves a slight abuse of language insofar as C is not

necessarily a fiber bundle over M. As rays can be arbitrarily reparametrized,
X E Cq implies that cX E Cq for all c E R 0} -

This justifies calling Cq a

0

"cone". Clearly, a vector X E TqM is in Cq if and only if it is of the form

X = FH(u) where u E Xq and H is a local Hamiltonian for JV which is

defined around u. Moreover, for any local Hamiltonian H, the image of the

map CH defined through (5.16) is a subset of C. Note, however, that even for

a global Hamiltonian the image of aH does not necessarily cover all of C; the

reason is that the image Of OH need not be invariant under multiplication
with negative numbers.

0

In the case of Example 5.1.1, Cq = {X E TqM I go(X,X) = 01,
i.e., Cq equals the null cone of the Lorentzian metric go at q. In partic-

0

ular, C. is a closed codimension-one submanifold of TqM in this case.

The situation is completely different in the case of Example 5.1.2. Here
0

Cq X E TqM I go (XI X) < 0 1 equals the interior of the null cone of the
0

Lorentzian metric go and is, thus, an open subset of TqM. For the ray-optical
structures of Example 5.1.3 and Example 5.1.4, Cq c Uq I c (-= R \ 10} I is

0

a one-dimensional submanifold of TqM whereas in the case of Example 5.1.5

0

Cq is all of TqM.
These examples show that C has very different features for different ray-

optical structures. Moreover, they demonstrate that there is no obvious re-

lation between the geometry of A( and the geometry of C. In the case of

Example 5.1.1, which dominates our intuitive ideas of general relativistic ray

optics, JV and C are diffeomorphic. In the other cases, however, C looks com-

pletely different from A(.

The following proposition implies that in the strongly regular case C can-

not be diffeomorphic to Ar.

Proposition 5.2.2. Let A( be a ray-optical structure on M and q E M. If
A( is strongly regular at all points u E Ar., the infinitesimal light cone Cq is

0

an open subset of TqM.

Proof. By Definition 5.2.2, strong regularity implies that the differential of

the map 0`H has maximal rank. 1:1

This observation is exemplified by Example 5.1.2 and Example 5.1.5.

Please recall that strong regularity guarantees that the system of equa-

tions (5. 10) and (5. 11) can be solved for the momentum coordinates Pa (s) and

for the stretching factor k(s). It is worthwile to become clear about the in-

formation contained in this system of equations. If a curve s i ) (x(s), p(s))
satisfies (5.10) and (5.11) with some k(s) but not necessarily (5.12), it de-

termines at each of its points the same velocity vector as a lifted ray passing
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through this point. Hence this curve, although not necessarily a lifted ray,

describes an object moving at the velocity of light (in the medium for which

M gives the dispersion relation). We now introduce a special name for such

curves.

Definition 5.2.4. Let M be an arbitrary ray-optical structure on M. A C'

immersion  : I M from a real interval I into JV is called a lifted virtual

ray iff

WS), Zoo) = 0 (5.19)

for all s E I and all Z (,) E T (,)Af with (T-r) )(Z (,)) = 0. Then the projected

curve -r;4 o  : I ) M is called a virtual ray.

This notion of "virtual rays" should not be confused with the notion of

"virtual images" which is used in elementary optics.
It follows immediately from the definitions that lifted virtual rays and

virtual rays can be characterized in the following way.

Proposition 5.2.3. Let M be any ray-optical structure M on M. Then a

CI immersion M is a lifted virtual ray if and only if

(-r, 4 o  )* = k FH o  (5.20)

with some function k: I R \ 101. Here H is any (local) Hamiltonian for

the ray-optical structure M.

A COO immersionX: I M is a virtual ray if and only if  (s) E C,\(s)
for all s E I. Here C,\(,) denotes the infinitesimal light cone introduced in

Definition 5.2.3.

Clearly, a ray is all the more a virtual ray whereas the converse is in

general not true. In the case of Example 5.1.1 all g,,-light-like curves in M

are virtual rays but only the g,,-Iight-like geodesics are rays. In the case of

Example 5.1.2 the rays are the g,,-time-like geodesics whereas all g,,-time-like

curves are virtual rays. In the case of Example 5.1.3 and 5.1.4 an immersed

curve in M is a ray iff it is a virtual ray iff it is an arbitrarily parametrized

integral curve of the vector field U. In the case of Example 5.1.5 all immersed

curves in M are virtual rays whereas only the g+-geodesics are rays.

IfM is orientable, we can generalize Definition 5.1.3 in the following way.

Definition 5.2.5. Let Ar be a ray-optical structure on M and [H] be an ori-

entation for Ar. Then a lifted virtual ray  of JV is called positively oriented

if (5.20) holds with a positive function k for any H E [H] - Similarly, a virtual

ray is called positively oriented if it is the projection of a positively oriented

lifted virtual ray.

In the next proposition we prove that in the strongly hyperregular case

there is a global one-to-one correspondence between positively oriented lifted
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virtual rays and positively oriented virtual rays, i.e., that at each point of

a positively oriented virtual ray the momentum covector is uniquely deter-

mined.

Proposition 5.2.4. Let Ar be a ray-optical structure on M and assume that

Ar is strongly hyperregular. By Definition 5.2.2 this guarantees the existence

of a global Hamiltonian H for M such that the map OH: Ar x R+ ) TM

defined through (5.16) is a global diffeomorphism onto its image. Choose such

a Hamiltonian, thereby defining an orientation [H] for JV. Then for every

positively oriented virtual ray X: I ) M there is a unique positively oriented

lifted virtual ray  : I Ar that projects onto X, r, 4 o A.

Proof. The nontrivial claim is the uniqueness of  . So let us assume that

 , and  2 do the job. Since lifted virtual rays have to satisfy (5.20), this

implies that k, IFH o  , = k2 FH o  2. Since both  , and  2 are supposed to be

positively oriented, k, and k2 have to be positive such that the last equation
can be written in the form 6rH ( , (s), ki (s)) = 17H ( 2 (s), k2 (S)) for all s E I.

Since OH is a diffeomorphism, this implies 61 =  2. 11

Example 5.1.5 demonstrates that the restriction to positively oriented

lifted virtual rays is, indeed, necessary to get uniqueness.

5.3 Symmetries of ray-optical structures

As the symmetries of a ray-optical structure Ar on M we can view all dif-
0

feomorphisms on T*M that leave JV invariant. For our purposes it will be
0

reasonable to restrict to those diffeomorphisms on T*M that are induced

from diffeomorphisms on the base manifold M. (Such diffeomorphisms are

called "point transformations" in Hamiltonian mechanics.) To work this out,

we have to recall that each diffeomorphism. V): M ) M induces a cotan-

gent map T*?P: T*M ) T*M which is again a diffeomorphism, defined

by the equation ((T*V)) (u)) (X) = u(TV)(X)) for all q E M, X E TqM and

u E T M. It is well known and easily verified that T*0 leaves the canonical

one-form 0 and, thus, the canonical two-form S? invariant, i.e.,

(T*,O)*O = 0 and (T*O)*Q = R - (5.21)

For an invariant proof we refer to Abraham and Marsden [1], Theorem 3.2.12.

As an alternative, the proof can be accomplished easily in a natural chart. If

,0 is represented, in a local chart, by a map x
i ) x, (T*O)-l is represented

in the pertaining natural chart by the map (x, p) 1 ) (x', p') with p' given

by (2.71).
After these preparations we are now ready to introduce the following

definition.
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Definition 5.3.1. Let X be a ray-optical structure on M. The symmetry

group GAr ofA( is, by definition, the set of all diffeomorphismo: M ) M

such that T*0 leaves Ar invariant, i. e., such that (T*'O) (u) E A( for all u E M.

Clearly, GA( is a group with respect to composition of maps.

For the sake of illustration we take a look at the symmetry groups of our

standard examples. In the case of Example 5.1.1, where Ar is the set of all

light-like covectors of a Lorentzian metric g,,, the symmetry group G.'V con-

sists of all diffeomorphisms V): M ) M for which the pulled back metric

V)*g,, has the same cone bundle as g,. This is the case if and only if O*g, is

conformally equivalent to g,,, i.e., if and only if O*g,, = e2fg,, with some C'

function f : M ) R. For a proof of this well-known fact we refer, e.g., to

Wald [146], p. 445. Hence, in the case of Example 5.1.1 the symmetry group

G.1v equals the set of all conformal symmetries of the Lorentzian manifold

(M, g,,). In particular, this implies that GAr is a finite-dimensional Lie group.

Similarly, in the case of Example 5.1.2 we find that the symmetry group is

the group of all isometries of the metric g,,. Again, this is a finite-dimensional

Lie group. In the case of Example 5.1.3, on the other hand, the symmetry

group GA( consists of all diffeomorphisms 0: M ) M that map arbitrar-

ily parametrized integral curves of U onto arbitrarily parametrized integral
curves of U. In general, this is an infinite-dimensional subgroup of the dif-

feomorphism group Diff(M). The same result is found for Example 5.1.4,
with the only difference that the diffeomorphisms 0 have to respect the

parametrization adapted to U in addition. Finally, in the case of Exam-

ple 5.1.5, the symmetry group is the group of isometries of the Riemannian

metric g+.

Next we want to show that for any V) E GAr the induced cotangent map

T*,o maps lifted rays onto lifted rays. For later convenience we prove the

following more general proposition.

0

Proposition 5.3-1. Let A( be a ray-optical structure onM and TI: T*M
0

T*M be a C' diffeomorphism. Assume that T1 leaves the canonical two

form 0 invariant up to a factor, i. e., !P* Q = f Q with some function
0

f : T*M R, and that T1 is fiber preserving, i.e., r j (Tf(ul)) -= T j (11(U2))
whenever -r, j (ul) --*:-- Ttj (U2). Then the following properties are mutually

equivalent.

(a) T1 leaves JV invariant, i.e., 0/(u) E JV for all u E./V.

(b) T1 maps each lifted ray ofM onto a lifted ray.

(c) T1 maps each lifted virtual my ofJV onto a lifted virtual ray.

Proof. First we assume that (a) is satisfied. To prove that then (b) and (c)
hold true, we pull back the equation Tl* Q = f Q to Ar. As the diffeomorphism

0

TV leaves JV invariant and A( is a closed submanifold of T*M, TV maps JV

diffeomorphically onto itself. Hence, !P (S?Ar = fIA(S?,v where T1,V: M ) X
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denotes the restriction of T1 to Ar. This implies that, for any C' immersion

I Ar,

S?x ((TI o f o  S?,v ( , (TTI) (5.22)

Now let us assume that  is a lifted ray of Ar. Then, by (5.19), the right-
hand side of (5.22) vanishes, so the left-hand side has to vanish as well, i.e.,
T1 o  has to be a lifted ray as well. This proves the implication "(a)=>(b)".
To prove the implication "(a)=*(c)", let us assume that  is a lifted virtual

ray. Then, by Definition 5.2.4, the right-hand side of (5.22) vanishes on all

vectors X such that (TTI)-'(X) is vertical. Since TV is fiber-preserving, the

latter condition is equivalent to X being vertical. Thus, the left-hand side

of (5.22) has to vanish on all vertical vectors, i.e., T1 o  has to be a lifted

virtual ray. The proof of the converse implications "(b)=>(a)" and "(c)=*(a)"
0

is trivial since a point u E T*M is in A' if and only if there is a lifted ray

through u if and only if there is a lifted virtual ray through u. b

If we apply this proposition to the map T1 = T*,o o we see that aITIM
diffeomorphism  b: M M is in G.,V if and only if its cotangent map

T*O maps lifted rays onto lifted rays if and only if T*O maps lifted virtual

rays onto lifted virtual rays. This implies, in particular, that any 0 E GAr

maps rays onto rays. Please note, however, that the converse is not true. A

diffeomorphism 0: M ) M that maps rays onto rays need not be in GV.
This is in correspondence with our earlier observation that two different ray-

optical structures on M may have the same rays. As an example we may

consider a ray-optical structure constructed from a (positive definite) Rie-

mannian metric g+ as in Example 5.1.5. Then a diffeomorphism'O: M ) M

such that O*g+ = cg+ with a positive constant c 54 1 maps rays onto rays

but it is not in the symmetry group GAr.
As an alternative, symmetries can be treated in terms of. infinitesimal

generators. This gives a symmetry algebra rather than a symmetry group.

To make this definition precise we need the well-known fact that each vector

field K on M defines a vector field 9 on T*M which is called the canonical

lift of K. Let

0: V gRxM ) M, (t,q)  

) Ot(q), (5.23)

denote the flow of K, i.e., let t 1 ) dit(q) denote the integral curve of K that

passes at t = 0 through the point q. Then the vector field k is defined by the

condition that its flow  b is given by the equation 4bt = T*-D-t. In a natural

chart the canonical lift of the vector field K = Ka(x) -.!2- takes the form
8XI

ff = Ka (X)
a

- A

9Kb(X) a
(5.24)

axa gxa 9pa

Comparison with (4.2) shows that k is the Hamiltonian vector field of the

function H = 0(k) : T*M ) R, i.e., -k = XH- In terms of a natural chart

this function takes the form H(x, p) = pa Ka (X).
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Now the symmetry algebra of a ray-optical structure can be defined in

the following way.

Definition 5.3.2. Let Ar be a ray-optical structure on M. The symmetry

algebra 9Ar of Ar is, by definition, the set of all C' vector fields K on M

such that at all points of X the canonical lift K of K is tangent to M.

It is easy to check that gAr is a Lie algebra with respect to the usual Lie

bracket of vector fields. Clearly, the one-parameter subgroups of GAr are in

one-to-one correspondence with the complete vector fields in Q'V.
In analogy to (5.21) the canonical lift k of a vector field K satisfies

LEO = 0 and LES? = 0 (5.25)

where L denotes the Lie derivative. Hence, by applying (a local version of)
Proposition 5.3.1 to the (local) flow of k we get the following result.

Proposition 5.3.2. Let Ar be a ray-optical structure on M. Then for a C'

vector field K on M the following properties are equivalent.

(a) K is in 9,v.

(b) The flow of the canonical lift of K maps lifted rays onto lifted rays.

(c) The flow of the canonical lift of K maps lifted virtual rays onto lifted
virtual rays.

In Hamiltonian mechanics it is well-known that symmetries give rise to

constants of motion. Similarly, every element of 9,V is associated with a func-

tion on T*M which is constant along each lifted ray. This is shown in the

following proposition.

Proposition 5.3-3. Let Ar be a ray-optical structure on M and K E 9A(.

Then the function O(ff): T*M ) R is constant along each lifted ray. Here

0 denotes the canonical one-form on T*M and k denotes the canonical lift

of K.

Proof. We fix a point u E Ar and a local Hamiltonian H for Ar around u.

Then the definition of the exterior derivative d implies that (dO) (XH, k) =

XH(O(k)) - k(O(XH)) - OQXH7 k1) where [ -,
- ] denotes the Lie bracket of

vector fields. On the left-hand side we use the definition (4.1) of the Hamil-

tonian vector field XH, on the right-hand side we use (5.25). This results in

-dH(k) = XH (0(k)) .
On Ar, the left-hand side vanishes since k is tangent

to Ar. Hence, the right-hand side has to vanish on JV as well. This implies
that the function O(k) is constant along each integral curve Of XH which is

contained in JV, i.e., along each lifted ray. 0

If K E 9,V is represented in a local chart as K = alOx', which is possible

locally around any point of M where K does not vanish, the constant of

motion O(k) is exactly the corresponding momentum coordinate, O(R) = p,,.
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For this reason O(k) is called the momentum of the infinitesimal symmetry
K E Qff-

The fact that symmetries imply constants of motion is of particular rel-

evance in view of dimensional reductions. Given a ray optical structure Ar

on M, any subgroup G of the symmetry group QV can be used to define an

equivalence relation on M by

q, - q2 4==:>. there is a 0 E G such that q, = V)(q2)-

If the action of G on M satisfies some regularity conditions, the quotient space

M = Ml- can be furnished with a manifold structure such that the natural

projection pr: M ) M' becomes a submersion. If G is an r-dimensional

Lie group, Proposition 5.3.3 gives rise to r constants of motion. Fixing a

value for each of them singles out a certain subclass of lifted rays of Ar.

Circumstances permitted, this subclass of lifted rays projects onto a reduced

ray-optical structure )V on M. We shall discuss this reduction formalism in

full detail for stationary ray-optical structures on Lorentzian manifolds in

Sect. 6.5 below. Relevant background material on the general features of the

reduction formalism can be found in Chap. 4 of the book by Abraham and

Marsden [1].
The possibility to use symmetries for dimensional reduction is an impor-

tant motivation for considering ray-optical structures on bare manifolds of

unspecified dimension.

We end this section with some remarks on the isotropy subgroup GAZV of

GAr. This is defined, for each q E M, by

GAqr = 10 E GAr I O(q) = q}. (5.26)

For any 0 E GqV, the cotangent map T*O restricted to T,*M gives us a
JV

linear automorphism Tq*o: Tq*M Tq*M that leaves the manifold Arq
A( n Tq*M invariant. We introduce the following definition.

Definition 5.3.3. Let A( be a ray-optical structure on M and fix a point

q E M. By definition, the structure group of JV at q is the set of all linear

automorphisms Tq*M Tq*M that leave the manifold Xq = A( n Tq*M
invariant.

In the case of Example 5.1.2, the structure group at q consists of all

Lorentz transformations of the metric golq, whereas in the case of Exam-

ple 5.1.1 it contains the multiplications with nonzero numbers in addition.

In the case of Example 5.1.4, the structure group at q is represented by all

invertible matrices of the form

A A',-' An,

(Ab (5.27)
A' ... An- 1 An
n- 1 IL- 1 n- 1

0 ... 0 An
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in a basis such that U'(q) = b., whereas in the case of Example 5.1.3 the

equation A = 1 must be satisfied in addition. Finally, in the case of Exam-

ple 5.1.5, the structure group at q consists of all linear automorphisms that

are orthogonal with respect to the metric 9+lq-
As long as M is a bare manifold, the only distinguished linear auto-

morphisms on Tq*M are dilations and inversions, i.e., multiplications with

positive or negative numbers. The question of whether or not a ray-optical
structure is invariant under dilations and inversions is of particular relevance.

Therefore we devote the next subsection to this question.

5.4 Dilation-invariant ray-optical structures

The notion of dilation-invariance for ray-optical structures will give us a

mathematically elegant characterization of media which are dispersion-free.
For this reason the following definition is of paramount importance in ray

optics.

Definition 5.4.1. A ray-optical structure Ar on M is called dilation-invari-

ant at a point q E M if etu E Arq for all u E Arq and t E R. Ar is called

reversible at a point q E M if -u E Arq for all u E Arq. Ar is called dilation-

invariant (or reversible, resp.) if it is dilation-invariant (or reversible, resp.)
at all points q c- M.

If M is to be interpreted as a general-relativistic spacetime, a dilation-in-

variant ray-optical structure on M is called dispersion-free or non-dispersive,
otherwise it is called dispersive. In Chap. 6 below we shall link up this ter-

minology with the physics textbook definition of non-dispersive media, i.e.,

we shall use the notions of phase velocity and group velocity for characteriz-

ing dilation-invariant ray-optical structures. These notions refer to a time-like

vector field; hence, they can only be introduced if there is a Lorentzian metric

on M since otherwise we do not know what is meant by "time-like".

A brief look at our standard examples shows the following. Whereas Ex-

amples 5.1.1 and 5.1.3 are dilation-invariant and reversible, Examples 5.1.2,

5.1.4, and 5.1.5 are only reversible but not dilation-invariant.

For each t E R, the dilation

0 0

 Pt: T*M ) T*M, u
i

) et U (5.28)

is represented in a natural chart by the map (x, p) i
) (x, et p). With the

help of this representation it is readily verified that Ot leaves the canonical

one-form 0 = p,, dxa invariant up to a factor,

(P*O = et 0. (5.29)t

Application of the exterior derivative d yields
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 P*S? = et 0 (5.30)t

Applying Proposition 5.3.1 to the map Tf = Ot proves the following.

Proposition 5.4.1. For a ray-optical structure A( on M, the following prop-
erties am mutually equivalent.

(a) N is dilation-invariant.

(b) Each lifted ray  : I ) Af remains a lifted ray if it is multiplied pointwise
with a positive number,  ( - ) i

) et 6( - ).
(c) Each lifted virtual ray 6: 1 ) JV remains a lifted virtual ray if it is

multiplied pointwise with a positive number, et 6(
0 0

Similarly, the inversion X: T*M T*M is represented in each natural

chart bythe map (x,p) i ) (x,-p). This implies that X*O= -0 and X*Q =
-Q. Hence, Proposition 5.3.1 can be applied to the map T1 = X as well,
resulting in the following proposition.

Proposition 5.4.2. For a ray-optical structure JV on M, the following prop-

erties are mutually equivalent.

(a) A( is reversible.

(b) Each lifted ray 6: 1 A( remains a lifted ray if it is pointwise inverted,

6H A

) -6(-).
(c) Each lifted virtual ray 6: 1 A( remains a lifted virtual ray if it is

pointwise inverted, 6(.) 0

) -6(.).

The dilation-invariant case can also be characterized in terms of the vector

field that generates the one-parameter group of dilations. Since (5.28) satisfies
0

all properties of a *global C' flow on T*M, we can define a C' vector field
0

E on T*M by

Eu =
d (et u) I t=0 (5.31)dt

0

for all u E T*M. The integral curves of E are the radial lines in the fibers of

the cotangent bundle. This vector field E is known as the Euler vector field
0

or Liouville vector field on T*M. In a natural chart E takes the form

E = P"

(9
(5.32)

1OPa

(5.29) and (5.30) imply that the Lie derivatives of the canonical one-form

and of the canonical two-form with respect to the Euler vector field satisfy

LEO=O and LEQ= Q- (5.33)

Moreover
,
the identities
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O(E)=O and -20(E, -)=O (5.34)

are easily verified in a natural chart. In terms of the Euler vector field E

dilation-invariant ray-optical structures are characterized by the following

proposition.

Proposition 5.4.3. A ray-optical structure X on M is dilation-invariant

if and only if the Euler vector field E is tangent to JV at all points of JV.

Proof. The "only if part follows directly from Definition 5.4.1. For the "if'
0

part one has to use the fact that M is closed in T*M in addition. El

In terms of (local) Hamiltonians; dilation-invariance can be characterized

in the following way.

Proposition 5.4.4. A ray-optical structure M on M is dilation-invariant if

and only if any local Hamiltonian H forM satisfies the equation dH(E) = 0

on M.

The proof follows, immediately from the definitions. By (5.32), the equa-

tion dH(E) = 0 takes the form

Pa

'H

(x,p) = 0 (5.35)
1OPa

in a natural chart. (5.35) is certainly satisfied on M if H is a homogeneous

function (of any degree) with respect to the momentum coordinates p,,.

If Ar is a dilation-invariant ray-optical structure and u E Ar, then the

whole radial line I et u It E R I must be in Ar. This implies that X, = A(nT,*M
necessarily has a non-void intersection with each neighborhood of the origin

in T*M. Hence, A(q cannot be closed in T,*M. Typically, the closure Arq U 101
Of  7q in T,*M fails to be a smooth manifold at the origin but forms something

like a tip or a vertex there like in our Example 5.1.1, see Figure 5.1. For a

dilation-invariant ray-optical structure, Xq U f0} is a smooth manifold at the

origin if and only if it is a hyperplane. This situation is encountered in our

pathological Example 5.1.3, see Figure 5.3 (a).
Proposition 5.4.4 can be used to further characterize dilation-invariant

ray-optical structures in the following way.

Proposition 5.4.5. Let M be a dilation-invariant my-optical structure on

0

M. Fix a point u E Ar and, on some open neighborhood W of u in T*M, a

natural chart (x, p) and a local Hamiltonian H for M. Then there is a C E R

such that

(Ha6) (Ha) (Pb)
(5.36)) ( ) 1: (0)(Hb) 0 c 0

at u. Here we use the abbreviations (4-7) and the same matrix notation as

in (5.15).



90 5. Ray-optical structures on arbitrary manifolds

Proof. By assumption, H has to satisfy equation (5.35) at all points ofArnW.

This gives the last row of the matrix equation (5.36). Now consider the set

of all vertical vectors Z,,
a

at the point u. Such a vector is tangent to Ar if
ap.

and only if it satisfies Z,,
aH

= 0. In this case it can be applied to equationap.

(5.35) as a derivation resulting in A Za
a2H

= 0 at u. This shows that theZrPa Pb

a2H
equation A Zrp-

= -c
-2-H-L holds at u with some real number c. As the last

pb '9P.Pb

row of (5.36) was already verified, this completes the proof

Recalling Definition 5.2.2 of strong regularity, this proposition has the

following important consequence.

Corollary 5-4.1. A dilation-invariant ray-optical structure Ar on M cannot

be strongly regular at any point U E Ar.

Proof. Since at least one of the momentum coordinates must be non-zero at

u, (5.36) implies that the (n + 1) x (n + 1) matrix on the left-hand side has

zero determinant. On the other hand, non-vanishing of.this determinant was

the defining property of strong regularity according to Definition 5.2.2. 0

This corollary says that, if M is a spacetime and Ar describes light prop-

agation in a medium on this spacetime, strong regularity can hold only if the

medium is.dispersive.

Moreover, with the help of Proposition 5.4.5 it is easy to verify that the

fiber derivative of a (local) Hamiltonian of a dilation-invariant ray-optical
structure maps radial lines I et u I t E R I to radial lines I e FH(u) I t E R I
for u E JV. This implies that, for a dilation invariant ray-optical structure,

0

the infinitesimal light cone Cq is a closed subset of TqM and that it has

codimension > 1 if it is a submanifold. (Please recall Definition 5.2.3 and the

subsequent discussion.) This general result is exemplified by Example 5.1.1

and Example 5.1.3. On the other hand, transversality of Ar to the flow of the

Euler vector field is not sufficient for the infinitesimal light cones to be open.

This is demonstrated by Example 5.1.4.

The following proposition gives a pointwise characterization of dilation-

invariant ray-optical structures that will be of relevance later.

Proposition 5.4.6. Let Ar be a ray-optical structure on M. Then, for any

point u E Ar, the following properties are mutually equivalent.

(a) The Euler vector field E is tangent to Ar at the point u.

(b) Every characteristic vector field X on JV satisfies OAr(X) = 0 at u.

(c) O.,V A f2r' = 0 at u.

Here Or' means the antisymmetrized tensor product S?Ar A ... A S?Ar with

(n - 1) factors.
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Proof. To prove the equivalence of (a) and (b) we recall that locally every

characteristic vector field on JV is the Hamiltonian vector field of a local

Hamiltonian for JV. Thus, (b) holds true if and only if O(XH) = 0 at u

for any local Hamiltonian H. Owing to the second identity given in (5.34)
and the definition (4.1) of the Hamiltonian vector field, this is equivalent to

dH(E) = 0 at u for any local Hamiltonian H, i.e., it is equivaleni to (a).
Now we prove the equivalence of (a) and (c). It is obvious that, at each

0

point of T*M, 0 A 01-1 is a non-zero (2n - I)-form and has, thus, a one-

dimensional kernel. From (5.34) we read that this kernel is spanned by the

Euler vector field E. Hence the pull-back of 0 A 01-1 to JV vanishes exactly

at those points where E is tangent to JV. 13

According to this proposition, OAr A Q5V1 has no zeros if JV is every-

where transverse to the flow of the Euler vector field. In this case (JV, Ov)
is an exact contact manifold in the terminology of Abraham and Marsden

[1), Definition 5.1.4. In other words, transversality of JV to the flow of the

Euler vector field guarantees that JV is orientable and that there is even a

canonical volume form, viz. OAr A OW', on Ar. By Proposition 5.1.4, this im-

plies in particular the existence of a global Hamiltonian for such a ray-optical

structure.

Proposition 5.4.6 has the following important consequence for lifted vir-

tual rays. (Please recall Definition 5.2.4.)

Proposition 5.4.7. Let JV be a ray-optical structure on M. A lifted virtual

ray  : I A( satisfies the equation

OV-1) Ws)) = 0 (5.37)

at the parameter value s E I if and only if the Euler vector field E is tangent

to Ar at the point  (s).

Proof. By Proposition 5.2.3, the tangent vector of a lifted virtual ray is the

sum of a characteristic vector tangent to Ar and a vertical vector. Since all

vertical vectors are in the kernel of the canonical one-form, now the statement

follows from the equivalence of (a) and (b) in Proposition 5.4.6. 1:1

In Hamiltonian mechanics, integration over the canonical one-form gives

the socalled action functional. In this terminology, Proposition 5.4.7 says that

for a dilation-invariant ray-optical structure the action functional vanishes on

all lifted virtual rays. This observation will be of great importance for our

discussion of variational principles in Chap. 7 below.

If, on the other hand, the Euler vector field is everywhere transverse

to Ar, Proposition 5.4.7 guarantees that every lifted virtual ray admits a

reparametrization  such that

001) Ws)) = 1 (5.38)
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This gives a canonical parametrization for each lifted virtual ray  which

is unique up to an additive constant,  (s) 1 )  (s + s,,). In the case of

Example 5.1.5 this distinguished parametrization gives g+-arc length along
each virtual ray A = -r, 4 o  , i.e., g+ ( ,  ) = 1. Similarly, in the case of

Example 5.1.2 the distinguished parametrization gives g,,-proper time along
each virtual ray (= g,,-time-like curve). Finally, in the case of Example 5.1.4

the distinguished parametrization is adapted to U or adapted to -U along
each virtual ray (= integral curve of U) A = -r., 4 o  , i.e.,  = U o A.

No such distinguished parametrization exists if jV is dilation-invariant

since then every lifted virtual ray satisfies equation (5.37).

5.5 Eikonal equation

From the examples studied in Part I we know that families of rays are asso-

ciated with families of wave surfaces. In this chapter we want to study the

relation of rays and wave surfaces in our general geometrical setting. In par-

ticular we want to introduce, for arbitrary ray-optical structures in the sense

of Definition 5.1.1, an eikonal equation by which the dynamics of wave sur-

faces is determined. It is largely a matter of taste whether one considers rays

as more fundamental than wave surfaces or vice versa. Our intuitive ideas of

light propagation are normally based on the notion of rays, rather than on

the notion of wave surfaces. On the other hand, the derivation of ray optics
from Maxwell's equations leads to the eikonal equation first and to the ray

equation at a later stage, as we have seen in Part I.

Formally the eikonal equation of a ray-optical structure Ar on M can

be introduced as the Hamilton-Jacobi equation determined by any (local)
Hamiltonian for Ar. More precisely, we say that a C' function S: U ) R,

defined on some open subset U of M, is a classical solution of the eikonal

equation of Ar iff it satisfies the equation

H(dS(q)) = 0 for all q E U (5.39)

Here the differential of the function S is to be viewed as a local section in the

cotangent bundle, i.e., as a map dS: U T*U C T*M, and H denotes any

local Hamiltonian for JV whose domain of definition W C T*M covers the

point dS(q). In a natural chart the eikonal equation (5.39) takes the more

familiar form

H(x, 0S(x)) = 0. (5.40)

(5.39) can be rewritten without any reference to local Hamiltonians as

dS(U) C Ar (5.41)
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where dS(U) denotes the image of the section dS: U T*U C T*M.
0

Since A( is a subset of T*M, (5.41) automatically guarantees that dS has

no zeros. Hence, the function S determines a foliation (or "slicing") of the

open subset U of M into smooth hypersurfaces S = const. which are called

wave surfaces (or eikonal surfaces, or phase -surfaces). The motivation for

this terminology comes, of course, from the approximate-plane-wave method

outlined in Sect. 2.2.

In the case of Example 5.1.1 a wave surface is a g,,-light-like hypersurface
whereas it is a g,,-space-like hypersurface in the case of Example 5.1.2. In

the case of Example 5.1.3 a wave surface is foliated into integral curves of

the vector field U whereas it is transverse to U in the case of Example 5.1.4.

Finally, in the case of Example 5.1.5 a wave surface is a completely arbitrary

hypersurface.
The eikonal equation can be viewed analytically as a partial differen-

tial equation for a function S. As an alternative, suggested by (5.41), the

eikonal equation can be viewed geometrically as the problem of finding an

n-aimensional manifold (with certain properties) that is contained in a given

(2n - l)-dimensional manifold. Henceforth we take the geometrical point of

view which is of great advantage for global questions. In other words, we turn

our attention away from the function S and concentrate upon the manifold

dS(U).
For any Cc' function S: U R, dS(U) is an n-dimensional C' sub-

manifold of T*M and it is transverse to the fibers. Moreover, dS(U) is a

socalled "Lagrangian submanifold" of the symplectic manifold (T*M, Q).
This notion, which will be at the center of this section, is defined in the

following way.

Definition 5.5.1. LetC C T*M be an embedded C' submanifold of T*M

and denote the inclusion map by j: C ) T*M.

(a) f- is called isotropic iff the pull-back with j of the canonical two-form S?

vanishes, j*f2 = 0.

(b) C is called Lagrangian iff f- is isotropic and dim(L) = dim(M).

Definition 5.5.1 admits an obvious generalization for immersed, rather

than embedded, submanifolds of T*M.

The non-degeneracy of Q immediately implies that an isotropic sub-

manifold of T*M must have dimension < dim(M). Thus, Lagrangian sub-

manifolds are isotropic submanifolds of maximal dimension. The name "La,

grangian submanifold" was introduced by Maslov and Arnold in the 1960s.

It refers to the following characterization of such submanifolds in terms of

the classical Lagrange brackets. Consider a k-dimensional embedded subman-

ifold f- of T*M; let (ul, ... 7 Uk) be any local chart on the manifold C and

let (xl.... Ixn 7 Pi, - - - , p.) be a natural chart (or, more generally, a canonical

chart) on T*M. Then the classical Lagrange brackets are defined as
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(UA) UB) -

axa lba yxa 19Pa
(5.42)

IOUA IOUB IOUB allA

for A, B = 1, . . . ,
k. Clearly, the same expression can be written without any

reference to a natural (or canonical) chart as

(UA7UB) = (j*J?)
C9

7 (5.43)GUA IOUB

for A, B k where j*f2 denotes the pull-back of 0 with the inclusion

map j: C T*M. From (5-43) it is obvious that the Lagrange brackets

vanish for all A, B = 17 ....
k if and only if the submanifold L is isotropic. In

other words, Lagrangian submanifolds are submanifolds of maximal dimen-

sion for which the Lagrange brackets vanish identically.
Properties of Lagrangian submanifolds are detailed in many articles and

textbooks, e.g., in Weinstein [148], Guillemin and Sternberg [55]), Abraham
and Marsden [1], and Woodhouse [150]. In the following two propositions
we recall some well-known facts which are of particular relevance for us, cf.

Figure 5.5.

Proposition 5.5.1. Let S: U R be a C' function defined on an open

subset U of M. Then L = dS(U) is an embedded Lagrangian submanifold of
T*M which is everywhere transverse to the fibers.

Proof. The only non-trivial claim is that C is isotropic. To prove this, we

recall that the canonical one-form 0 on T*M satisfies 0*0 = 0 where 3 is

any local section in T*M. Hence, (dS)*O = dS. Now we apply the exterior

derivative d to this equation. Upon using the identity dd = 0 and the fact

that d commutes with the pull-back operation, this results in (dS)*f2 = 0.

As the inclusion map j: f- ) T*M can be written in the form j = dS o -r, 4 ,

this implies j* S? = (-r, 4) * (dS) *Q = 0. 1:1

Proposition 5.5.2. Let f- be an n-dimensional embedded Lagrangian C'

submanifold of T*M which is everywhere transverse to the fibers. Then L

can be represented, locally around each of its points, in the forra L = dS(U)
where S: U ) R is a C' function defined on an open subset U of M.

Moreover, if L is simply connected, L can be globally represented in this way.

S is then called a generating function for L.

Proof. Since L is an n-dimensional C' submanifold of T*M transverse to the

fibers, it is the image of a local section in T*M. Thus, there is a (necessarily
open) subset U of M and a one-form 3: U ) T*U C T*M such that

L =,3(U). Since L is Lagrangian, 3*Q = 0. On the other hand, the defining

property of the canonical one-form 0 on T*M guarantees that 6*0 = 6

and, thus, 8*0 = -d,3. Comparison of these two results gives d# = 0. If U

is simply connected, this implies that )3 is of the form 0 = dS with some

function S: U ) R which is unique up to an additive constant. (S can be
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M

Fig. 5.5. A Lagrangian submanifoldC of T*M which is everywhere transverse to

the fibers is locally generated by a function S on M, i.e., C dS(U).

qdefined by fixing a point q' in U and setting S(q) where the integral
is to be performed along any path from q' to q. If U is simply connected,
the equation d,3 = 0 guarantees that the result is independent of the path
chosen. This follows from the well known Stokes theorem, see, e.g., Abraham

and Marsden [1], p. 138). Since U is simply connected if and only if L is

simply connected, this proves the second claim. The first claim follows from

the fact that each point in U has a simply connected neighborhood. 11

These two propositions have the following consequences, which are illus-

trated in Figure 5.5. Any classical solution S: U ) R of the eikonal equation
determines a Lagrangian submanifold L = dS(U) of T*M which is transverse

to the fibers and completely contained in Ar. Conversely, to any Lagrangian
submanifold,C of T*M which is transverse to the fibers and completely con-

tained in A( we can find, on each simply connected subset U of -r., 4 (C), a clas-

sical solution S of the eikonal equation such thatCn(-r )-'(U) = dS(U); this

solution S is unique up to an additive constant. These observations suggest
the following definition.

Definition 5.5.2. Let A( be a ray-optical structure on M. A generalized
solution of the eikonal equation of Ar is a Lagrangian C' submanifold r- of
T*M which is completely contained in Ar.

The following proposition guaranteees that any generalized solution of the

eikonal equation determines an (n - l)-parameter family of lifted rays.

Proposition 5.5.3. Let A( be a ray-optical structure on M and let L be an

embedded Lagrangian C' submanifold of T*M which is completely contained

in Ar. Then f- is foliated into lifted rays.

dS
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Proof. Fix a point u E L and let X,, E TA( c Tu(T*M) be a characteristic

vector for X, i.e., (f2,v)u (Xu, - ) = 0. This implies that Qu (Xu, Zu) = 0 for

all vectors Zu E TuC C TuJV. Since f- is Lagrangian, i.e., maximally isotropic,
this can be true only if Xu E T,,,,C. In other words, at all points u E C the

characteristic direction ofN must be tangent to L. Hence, L must be foliated

into integral curves of characteristic vector fields. 13

P 1C

T*M

M

Fig. 5.6. A generalized solution L to the eikonal equation can be constructed, ac-

cording to Proposition 5.5.4, by applying the characteristic flow to an appropriately
chosen isotropic submanifold P.

If we combine this observation with Proposition 5.5.1, we find that each

classical solution S: U ) R of the eikonal equation is associated with a

congruence of rays on U. Those rays are the projections to M of the lifted

rays into which L = dS(U) is foliated. (In terms of a local Hamiltonian and a

natural chart this construction is already known to us from Sect. 2.4.) In other

words, a classical solution S: U ) R of the eikonal equation determines,

on its domain of definition U C M, not only a "slicing" into wave surfaces

S = const. but also a "threading" into rays. Later in this section we shall

inquire whether rays and wave surfaces are transverse to each other.

The following proposition gives a construction method for generalized
solutions of the eikonal equation, please cf. Figure 5.6.

Proposition 5.5.4. Let Ar be a ray-optical structure on M. Fix an (n -

dimensional embedded C' submanifold P of T*M such that P is completely
contained in Ar, isotropic, and non-characteristic. By the latter condition we

mean that, at all points u E P C Ar, the characteristic direction of JV is non-

tangent to P. Let C be the set of all points in T*M that can be connected to

a point of P by a lifted ray. Then L is a generalized solution of the eikonal

equation of Ar. (In general, C is only an immersed but not an embedded

submanifold of T*M. However, if we restrict to an appropriate neighborhood

of P this construction always gives an embedded submanifold.)
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Proof. C is defined as the image of P under the flow of a characteristic vector

field. Since P is (n - I)-dimensional and non-characteristic, 'C must be an n-

dimensional immersed submanifold ofX. What remains to be shown is that L

is isotropic, i.e., that the pull-back of Q to C vanishes. If !D: (s, u) i ) -P, (u)
denotes the flow of a characteristic vector field on X, the image of P under

0., is an isotropic submanifold (for each s E R for which this image is non-

empty). This follows from the fact that the Lie derivative of Q with respect

to a Hamiltonian vector field on T*M vanishes. Hence, at each point of 'C

the tangent space to L is spanned by the characteristic direction and by

the tangent space to an isotropic submanifold. This proves that 'C must be

isotropic. 0

At the level of (local) Hamiltonians this is a standard result, cf., e.g.,

Abraham and Marsden [11, Lemma 5.3.29.

The construction of Proposition 5.5.4 can be carried through, in partic-

ular, for the special choice P = Xq = Ar n Tq*M where q is any point in

M. Since Arq is completely contained in the fiber Tq*M, it is, indeed, non-

characteristic and isotropic. Hence the image of P under the characteristic

flow gives a generalized solution L of the eikonal equation. Clearly, this f-

cannot be transverse to the fibers at q. The projection of 'C to M gives the

set of all points in M that can be joined to q by a ray.

On the other hand, it is also possible to choose the initial surface P in

such a way that the projection -r, 4 maps P diffeomorphically onto an (n - I)-
dimensional submanifold -r. 4 (?) of M. In this case the resulting generalized

solution L of the eikonal equation is transverse to the fibers, and thus of the

form dS(U), near P. It is foliated into lifted rays which, if projected to M,

give a congruence of rays that intersect -r 4 (P) transversely. Farther away

from P, however, C need not be transverse to the fibers and neighboring

rays may intersect each other, see Figure 5.6. This shows that it is necessary

to consider generalized solutions, rather than just classical solutions, of the

eikonal equation if one wants to treat global questions.

Proposition 5.5.4 has the following interesting consequence.

Proposition 5.5.5. Let  : I ) A( be a lifted ray of a ray-optical struc-

ture jV on M and s E I. Then there is an E > 0 and a classical solution

S: U R of the eikonal equation for A' such that  (s') E dS(U) for all

I
e8 = is - "'s + El.

Proof. Construct a generalized solutionC of the eikonal equation according

to Proposition 5.5.4, with an initial manifold P that passes through the point

 (s) and is transverse to the fibers at that point. Then f- must be transverse

to the fibers on some neighborhood of X(s), i.e., it can be written as the image

of a differential dS on that neighborhood. As, by construction,  is contained

in C, this concludes the proof. 1:1

Quite generally, Proposition 5.5.4 gives a generalized solution of the

eikonal equation in the form of an (n - I)-parameter family of lifted rays,
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parametrized by the points of P. It is crucial to realize that only very special
(n - l)-parameter families of lifted rays give rise to a generalized solution

of the eikonal equation. This special property is in the condition of P be-

ing isotropic which guarantees that L is Lagrangian. This condition on the

(n - I)-parameter family of lifted rays can be viewed as an integrability con-

dition. The following proposition is helpful to clarify the geometric meaning
of this integrability condition.

Proposition 5.5.6. Let L be an embedded C' submanifold of T*M, de-

note the inclusion map by j: L ) T*M and let Oc = j*O and &?L = j*S?-
Then the following two statements are equivalent.

(a) Qc = 0, i.e., L is an isotropic submanifold of T*M.

(b) On every simply connected open subset a of L there is a C' function
9: 0 ) R, unique up to an additive constant, such that d,9 = OL Ia.

Proof. Since 0 = -dO and the exterior derivate d commutes with the pull-
back operation, S?,c = 0 is equivalent to d0,C = 0. On a simply connected

subset this equation is satisfied if and only if 0,C is the differential of a function,
please cf. the proof of Proposition 5.5.2. 11

As a consequence, an n-dimensional submanifold L of M is a generalized
solution of the eikonal equation if and only if the kernel distribution of the

one-form 0,C is locally integrable.
If we supplement the hypotheses of Proposition 5.5.6 with the assump-

tion that 0,C has no zeros, the isotropy condition 0,C = 0 guarantees that

L is locally foliated into hypersurfaces 9 = const. If we specialize from the

isotropic to the Lagrangian case, the situation that 0,C has no zeros can be

characterized with the help of the Euler vector field (5.31) in the following

way.

Proposition 5.5.7. Let L be an embedded Lagrangian submanifold of T*M
and u E L. Then the pull-back to L of the canonical one-form 0 has a zero

at u if and only if the Euler vector field E is tangent to C at u.

Proof. Let us assume that Ou(Xu) = 0 for all Xu E T,,f- C Tu(T*M). By
(5.34) this is equivalent to Qu(Eu, X,,,) = 0 for all Xu E TuL C Tu(T*M). As

L is Lagrangian (i.e., maximally isotropic), this is equivalent to Eu E TuL c

Tu(T*M). o

If a Lagrangian submanifold of T*M is invariant under the flow of the

Euler vector field, it is called conic (cf. Guckenheimer [52]) or homogeneous
(cf. Guillemin and Sternberg [55]). Conic Lagrangian submanifolds are of

relevance as generalized solutions of the eikonal equation for dilation-invariant

ray-optical structures. They are necessarily non-transverse to the fibers, i.e.,

they cannot be associated with classical solutions of the eikonal equation.

By Proposition 5.5.7, the pull-back of the canonical one-form 0 to a conic
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Lagrangian submanifold vanishes identically, i.e., its kernel distribution does

not give a foliation into smooth hypersurfaces.
Let us consider, on the other hand, a Lagrangian submanifoldC of T*M

such that the Euler vector field is nowhere tangent to L. In this case Propo-

sition 5.5.7 guarantees that the pull-back of 0 to C has no zeros. As a conse-

quence of Proposition 5.5.6, the kernel distribution of this one-form defines a

foliation of C into smooth hypersurfaces. We introduce the following termi-

nology.

Definition 5.5.3. Let L be a generalized solution of the eikonal equation

of a ray-optical structure X on M. Assume that the Euler vector field is

nowhere tangent to L such that the pull-back Oc to JV of the canonical one-

form 0 has no zeros. Then an integral manifold of the kernel distTibution of

0,C is called a lifted wave surface of C.

On each simply connected open subset of L, a lifted wave surface of C

can be represented as a surface 9 = const. where S satisfies dS = OC. If, in

the situation of Definition 5.5.3, C is transverse to the fibers of T*M, the

projection r. 4 maps each lifted wave surface onto a smooth hypersurface in

M which, in agreement with our earlier terminology, is called a wave surface

associated with C. If C is not transverse to the fibers, the image of a lifted

wave surface under the projection r) need not be a smooth submanifold of

M and could be called a generalized wave surface.
We have, thus, generalized our earlier observation that a classical solution

S: U ) R of the eikonal equation is associated with a "slicing" of U into

wave surfaces and a "threading" ofU into rays. A generalized solution L ofthe

eikonal equation is associated with a "slicing" of C into lifted wave surfaces

and a "threading" of C into lifted rays, provided that the Euler vector field

is nowhere tangent to L. The question of whether lifted rays are transverse

to lifted wave surfaces is answered in the following proposition.

Proposition 5.5.8. Let C be a generalized solution of the eikonal equation

of a ray-optical structure M on M. Assume that the Euler vector field is

nowhere tangent to C, i. e., that L is foliated not only into lifted rays but also

into lifted wave surfaces. Then for any point u E C C M the following two

statements are equivalent.

(a) The lifted ray through u is tangent to the lifted wave surface through u.

(b) The Euler vector field E is tangent to Ar at u.

Here we speak of "the" lifted ray through u in the sense that this lifted ray is

unique up to reparametTization and extension.

Proof. Let X. E T,,j\( C T.,,(T*M) be tangent to the lifted ray through

u, i.e., let Xu be a vector that spans the characteristic direction at u. By

Definition 5.5.3, (a) is satisfied if and only if Ou (Xu) = 0. By Proposition 5.4.6,

this is equivalent to (b). 11
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Let us apply this proposition to a ray-optical structure JV which is eve-

rywhere transverse to the flow of the Euler vector field, such as given by
Example 5.1.2, 5.1.4 or 5.1.5. Then the Euler vector field cannot be tangent
to a generalized solution of the eikonal equation, i.e., it is automatically guar-

anteed that every generalized solution C of the eikonal equation is foliated

into lifted wave surfaces. By Proposition 5.5.8, those lifted wave surfaces are

always transverse to the lifted rays into which C is foliated. Any real val-

ued (local) function 9 on C with d,9 = 0,C gives a (local) parametrization
on each of those lifted rays. This distinguished parametrization, which is

unique (globally along the lifted ray) up to an additive constant, was already
mentioned in Sect. 5.4, see (5.38).

The situation is completely different for a dilation-invariant ray-optical
structure Ar, such as given by Example 5.1.1 or 5.1.3. For a generalized solu-

tion L of the eikonal equation, the Euler vector field E may or may not be

tangent to C at any of its points. Only in the case that E is nowhere tan-

gent to L is C foliated into lifted wave surfaces. By Proposition 5.5.8, those

lifted wave surfaces are then foliated into lifted rays. In other words, any real

valued function S on C with dS = 0,C is constant along each of those lifted

rays.

For an arbitrary ray-optical structure JV on M these considerations apply
to the maximal open subset of Ar on which E is non-tangent to JV and to

the maximal open subset of Ar on which E is tangent to Ar. A full discus-

sion requires an appropriate matching procedure in addition. This is rather

cumbersome and we abstain from working out an example.

5.6 Caustics

In the last section we have seen that generalized solutions L of the eikonal

equation are foliated into lifted rays. If projected to M those lifted rays give
a congruence of rays as long as L is transverse to the fibers of T*M. At points
where L fails to be transverse to the fibers neighboring rays start intersect-

ing, see Figure 5.6. In optical terminology, this indicates the formation of a

64caustic"
.
Therefore we introduce the following mathematical definition.

Definition 5.6.1. Let L c T*M be an embedded Lagrangian C' submani-

fold of T*M and denote the restriction to L of the cotangent bundle projec-
tion -r;4 by n = -r, 4 1,c: L ) M. Then u (-= C is called a critical point of L

iff the tangent map Tun: TuL ) Tr.(u)M is not surjective. The set

Caust,c = I n(u) E M I u is a critical point of L (5.44)

is called the caustic of L.

Clearly, the critical points of L are exactly those points where L is not

transverse to the fibers of T*M. In other words, C is everywhere transverse

to the fibers if and only if Caustc = 0.
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In any case, Caustc is a set of measure zero in M. This is an imme-

diate consequence of the well-known Sard theorem which is proven, e.g., in

Abraham and Robbin [2], p. 37. In general, Caustc features cusps, edges
and vertices, i.e., Caustc is not a submanifold of M. Thus, the geometry of

caustics can be very complicated even locally. Quite generally, the variety of

cusps, edges and vertices possible is so vast that a complete classification is

not feasible. However, V. Arnold was able to locally classify all caustic types

which are stable in a certain sense. For the details of this highly technical

work we refer to Arnold, Gusein-Zade and Varchenko (9]. Arnold's formal-

ism was applied to general relativity, e.g., by Friedrich and Stewart [45], by
Petters [114], by Hasse, Kriele and Perlick [57], and by Low [871.

Here we want, of course, to apply Definition 5.6.1 to the case that L is a

generalized solution of the eikonal equation of a ray-optical structure X on

M. Then L is foliated into lifted rays which can be projected to M to give

a family of rays. In this situation, Caustc is the set of all points in M where

infinitesimally neighboring rays intersect each other. To put this rigorously

we introduce the following notation (see Figure 5.7).

Definition 5.6.2. Let X be a my-optical structure on M.

(a) A COO vector field Z on X is called a field of connecting vectors iff, for

every characteristic vector field X on X, the Lie bracket [Z, X] is, again,
characteristic.

(b) Let  : I ) Ar be a lifted ray of Ar and let T: I TAr be a C' map

with 7(s) E T (,)A( for all s E I. i is called a lifted Jacobi field along

 iff it can be represented, locally around any parameter value s E 1, in

the form .7 = Z o where Z is a field of connecting vectors. Two lifted

Jacobi fields along are called equivalent iff they differ by a multiple of

the tangent field  of  . The respective equivalence classes are called lifted

Jacobi classes. A lifted Jacobi field is called trivial if it is equivalent to

the zero vector field, i.e., if it is parallel to the tangent field of 6 -

(c) If i is a lifted Jacobi field along  , J = T-r 4 o i is called a Jacobi field

along the ray A = -r,' o  - Two Jacobi fields along A are called equivalent

if they differ by a multiple of the tangent field of A. The respective equiv-

alence classes are called Jacobi classes. A Jacobi field is called trivial if

it is equivalent to the zero vector field, i.e., if it is parallel to the tangent

field of A.

For a ray-optical structure X whose rays are geodesics, such as in our

Examples 5.1.1, 5.1.2 and 5.1.5, Definition 5.6.2 (c) reproduces the standard

textbook definition of Jacobi fields. (Note, however, that those standard text-

books usually assume their geodesics to be affinely parametrized whereas our

rays are arbitrarily parametrized.)
If i is a lifted Jacobi field along a lifted ray  , the "arrow-head" of .7 can

be thought as tracing a neighboring lifted ray which is infinitesimally close

to  . All members of a lifted Jacobi class trace the same neighboring lifted

ray.



102 5. Ray-optical structures on arbitrary manifolds

0

T*A1

J(S)
M

A(S)

Fig. 5.7. A lifted Jacobi field i connects a lifted ray  with a neighboring lifted

ray; a Jacobi field J connects a ray A with a neighboring ray.

To construct a lifted Jacobi field along a lifted ray  : [sl, s2] Af we

consider a variation of  , i.e., a C" map q: I - Cc? 7 Co [ X [S 11 S21 o Ar

such that q(e, - ) is a lifted ray for all C G ] - 6,,, E,, [ and 77 (0, - ) =  . Then

differentiation with respect to the variational parameter E at e = 0 gives a

lifted Jacobi field along  , i(s) = 77( -, s)
*

1,=O. In a natural chart, denoting
the derivative with respect to the variational parameter by 5 such that

i=6x'
a

+ 6P.
19

(5.45) 7XW ON

a lifted Jacobi field is determined by the set of equations

5 (H(x, p)) = 0
, (5.46)

j(ba - k
9H

(X)P)) = 0, (5.47)
ON

J(Pa + k
aH

axa
(XI P)) = 0

1 (5.48)

where H is any (local) Hamiltonian for the ray-optical structure considered.

(5.46), (5.47) and (5.48) are, of course, just the conditions that the ray equa-

tions (5.10), (5.11) and (5.12) are to be preserved. The J-derivatives in (5.46),
(5.47) and (5.48) can be evaluated with the help of the usual product and

chain rules. As derivatives with respect to the variational parameter and with

respect to the curve parameter commute, (5.47) and (5.48) give us a system
of first order linear differential equations for JPa and Jxa. Any solution of

this system, with any Jk, that satisfies (5.46) gives us a lifted Jacobi field.

It is easy to verify the following fact. To any initial values jxa(sl), jp,,(Sl)
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that satisfy (5.46) there is a solution JxI, Jp,, of the full system (5.46), (5.47)
and (5.48), and it is unique up to adding a multiple of the tangent field. This

freedom corresponds to the freedom of choosing 6k at will.

This observation proves the following result which can be verified directly

from Definition 5.6.2 as well, without refering to the coordinate representation

(5.46), (5.47) and (5.48).

Proposition 5.6.1. The set o all lifted Jacobi fields along a lifted ray  isf
an infinite dimensional real vector space. The set of lifted Jacobi classes along

 is a (2n - 2)-dimensional real vector space, corresponding to the (2n - 2)
directions transverse to the characteristic direction in JV.

As a consequence, the set of Jacobi fields along a ray A is an infinite

dimensional real vector space. The set of Jacobi classes along '\ is a finite

dimensional real vector space of dimension < (2n - 2). Since there is a ray

through each point of M, the dimension cannot be smaller than (n - 1).
This minimal value is realized, e.g., in Examples 5.1.3 and 5.1.4. We shall

now demonstrate that the maximal value is realized in strongly regular ray-

optical structures. (Please recall Definition 5.2.2.) The proof will be based on

the observation that in the strongly regular case Jacobi classes are determined

by a second order linear differential equation that admits an existence and

uniqueness theorem; so the dimension of the space of Jacobi classes can be

found out by counting the allowed values for the inditial data.

Proposition 5.6-2. Let Ar be a strongly regular ray-optical structure on M

and A: [Sli 821 ) M be a ray of Ar. Choose an arbitrary affine connection

V on M. Then for any two vectors X and Y in T,\(,,)M there is a Jacobi

field J along \ with J(s1) X and V (s1) J = Y. This Jacobi field is unique

up to transformations J i J + w with w(si) = 0. As a consequence, for a

strongly regular ray-optical structure the vector space of Jacobi classes along

any ray X has dimension (2n - 2), corresponding to the (n - 1) components of

X and the (n - 1) components of Y transverse to the tangent vector  (si).

Proof. Let  : [Sli S21 ) Ar be a lifted ray that projects onto X First we

give the proof of the proposition under the additional assumption that  can

be covered by the domain of a Hamiltonian and by a natural chart. Then our

assumption of strong regularity guarantees that, in the natural chart chosen,

condition (5.15) holds along  ; we can thus introduce the inverse matrix by

(Gca) (Gc) ) ( (Hab) (Ha)
(5.49)

b) 0

1 0

(Ga) G (H 0 1

where the components Gca, G,, and G are to be viewed as functions of the

curve parameter s. Please recall that, in terms of their coordinate representa-

tion (5.45), lifted Jacobi fields along 6 are determined by (5.46), (5.47), and

(5.48). It is our goal to eliminate 5k and bp,, from these equations and to get
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a second order differential equation for Jx' alone, i.e., to get an equation for

Jacobi fields rather than for lifted Jacobi fields. To that end we observe that

(5.46) and (5.47) can be written as a matrix equation in the following way.

(Hab) (Ha) j92H
 a

'X')b) 0

k ap.,gXb (5.50)('pk')H
_

-9H jXa(

With the help of (5.49), (5.50) can be solved for JPb and Jk,

Jpc) (G (G ) ) (.1jta
-

92H jXb

Jk

ca) C k gp.igXb' (5.51)
(Ga) G -9H jXb7 a-x--r

(
With the help of (5.50), we may eliminate Jp, and Jk from (5.48) which gives
an equation of the form

Gab & b + Bab j:tb + Cab JXb
= o. (5.52)

Here Gab has the same meaning as in (5.49) and (5.50) whereas Bab and Cab
are some functions of s the special form of which will be of no interest in the

following. By construction, j = jXb --9ris a Jacobi field if and only if the JXb
ax.

satisfy (5.52). From (5.49) we read that

GcaHa
= 0

. (5.53)

Thus, for each parameter value s the matrix (Gca (s)) has a non-trivial kernel

which is spanned by the tangent vector of the ray, so (5.52) cannot be solved

for the second derivatives. This reflects the fact that initial values JXa(Sj)
and 6P(si) do not fix a solution Jx1 of (5.52) uniquely but leave the freedom

of adding multiples of the tangent field. At each parameter value s we may

introduce the (n - l)-dimensional vector space

L(s) = I (za) E R' I Ga(S) za = 0 (5.54)

which is transverse to the tangent vector ta(,) = k(s) Ha(S) since, by (5.49),

GaHa
= 1. (5.55)

From (5.49) we read that for all (za) in L(s) the equation

H6a (s)Gac(s)zc = Zb (5.56)

holds true, i.e., that on L(s) the matrix (Gac(S)) is invertible, with (Hba(S))
being its inverse. If we restrict to Jacobi fields with

(jxa (s)) E L(s) for all s, (5.57)

then (5.52) gives us a second order differential equation for JXa that admits

an existence and uniqueness theorem. In order to prove this it is convenient
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to choose the coordinates in such a way that Ha = J." and G,, = 5a along
A, which is possible owing to (5.55). With this choice of coordinates (5.57)
implies that (&ba(s)) E L(s) and (& a(s)) E L(s) for all s. As a consequence,

multiplying (5.52) with Hca results in

51-' + Hca Bab 5,tb + Hca Cab jXb = 0. (5.58)

Giving initial values J(sl) = X and J = Y is equivalent to giving initial

values 6xa (si) and 6.,ta (,,) - By adding appriopriate multiples ofa (SI) we get
initial values in L(sl) which determine a unique solution jXb of (5.58). Then
6Xb + f&b, with f(si) chosen appropriately, is a Jacobi field that satisfies the

original initial conditions. Except for its value at the initial point, f can be

chosen at will. This completes the proof under the assumption that A can be

covered by a chart of the desired form.

In the general case we divide the domain of A into subintervals such that

the restriction of A to each subinterval can be covered by a local chart in which

the equations Ha = 6.1 and Ga = 6' hold along A. Then we get the desired
a

Jacobi fields by solving (5.58) piecewise, where on each subinterval the initial

values are determined by the end values on the preceding subinterval. 1:1

Quite generally, Jacobi fields and lifted Jacobi fields can be used to

characterize caustics in the following, way. Let L be a generalized solu-

tion of the eikonal equation of a ray-optical structure Ar on M and let

 : [S17 821 ) C C Ar be a lifted ray through the point u =  (S2) E L.

Then u is a critical point of L, in the sense of Definition 5.6.1, if and only
if there is a non-zero vertical vector Zu E TuC. By the above argument, the

existence of such a vector Zu is equivalent to the existence of a non-trivial

lifted Jacobi field i along  such that J is everywhere tangent to C and .7(82)
is vertical. (Please note that i is everywhere tangent to L if 7(S2) is tangent

to L, owing to the Lagrange property of L.) Verticality of .7(S2) indicates

an intersection of the ray 7-,Z4 o  with the "infinitesimally neighboring ray"
J = T-r. 4 o j. In this sense, Caustc is the set of all points where infinites-

imally neighboring members of the family of rays determined by L have an

intersection. Note that, in general, J may be zero on a whole interval, i.e.,
the two neighboring rays may coincide on a whole interval. To exclude this

unwanted situation one introduces the following definition.

Definition 5.6-3. Let A: I ) Ar be a ray of a ray-optical structure X on

M and fix two different parameter values 8 11 S2 E 1. Let Jac(A, S1 7 S2) denote

the vector space of Jacobi classes [J) along A such that there is a J E [J] with

J(si) = 0 and J(S2) == 0. Then the point A(S2) is called conjugate to A(sl)
along A iff the dimension of Jac(A, S1, S2) is non-zero and this dimension is

called the multiplicity of the conjugate point.

For the ray-optical structures of Example 5.1.5, Definition 5.6.3 coincides

with the standard textbook definition of conjugate points in Riemannian
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geometry. For the ray-optical structures of Example 5.1.1 (and 5.1.2, respec-

tively) it coincides with the definition of light-like (and time-like, respectively)
conjugate points in Lorentzian geometry, cf. Beem, Ehrlich, and Easley [11].
The ray-optical structures of Example 5.1.3 and 5.1.4 do not admit any con-

jugate points.
Later we shall come back to the notion of Jacobi fields and of conjugate

points. In particular, we shall explicitly evaluate the differential equation for

Jacobi fields of isotropic ray-optical structures on Lorentzian manifolds in

Sect. 6.4, and we shall use the notion of conjugate points and its multiplicity
to develop a Morse theory for rays of strongly (hyper-)regular ray-optical
structures in Sect. 7.5. In the latter context, the following observation will

be important.

Proposition 5.6.3. Let A : I Ar be a ray of a strongly regular ray-

optical structure A( and fix a parameter value sl E 1. Then the following
holds true.

(a) If A(s) is conjugate to A(sl) along A, its multiplicity cannot be bigger
than (n - 1) -

(b) There is an e > 0 such that for 0 < I s - s1 1 < E the point A(s) cannot be

conjugate to A(si) along A.

(C) Let  be a lifted ray that projects onto A and assume that, with respect to

any local Hamiltonian and any natural chart, the matrix in (5.15) is not

only non-degenerate but even positive definite at all points of  . If A(S2)
is conjugate to A(si), then there is an e > 0 such that for 0 < IS -S21 < 6

the point A(s) cannot be conjugate to A(si) along A.

Proof. By Proposition 5.6.2, the vector space of Jacobi classes that vanish at

a particular point has dimension (n - 1). Hence, the vector space of Jacobi

classes that vanish at two points cannot be bigger than (n - 1). This proves

(a).
To prove (b), we consider the set of all Jacobi fields J that vanish at

si. By Proposition 5.6.2, the derivatives V (,,,)J of those Jacobi fields span

an (n - l)-dimensional vector space transverse to  (si), where V denotes

any affine connection on M. By Taylor's theorem, this implies that for 0 <

Is - si I < E the values J(s) pf those Jacobi fields span an (n - l)-dimensional
vector space transverse to A(s). This proves (b).

We now turn to the proof of (c) which is more difficult. If the point A(S2)
is conjugate to A(si) along A, part (a) implies that the multiplicity M of this

conjugate point has to satisfy the inequality m < n - 1. In this situation we

can find Jacobi fields J1,..., J,,-, along A such that

- the vector fields J1, . . . , J,,- 1,
 are linearly independent over R;

- JI(SO = J.-1(sl) = 0;

- J1 (S2) = Jm (S2) = 0 ;

- the vectors Jm+1 (S2)) ... ) Jn- 1 (S2) 7
 (S2) are linearly independent.
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A vector field along A that vanishes at s, is a Jacobi field if and only if it

differs from a linear combination of J1, . . - , J,,- 1 with constant coefficients by

a multiple of k Here we made use of Proposition 5.6.2.

Now we give the proof of (c) under the additional assumption that the

lifted ray is contained in the domain of a natural chart (x,p) and of

a Hamiltonian H for M. For A (n - 1), our Jacobi fields are then

represented in the form

JA = JAXa
a

(5.59)
,gXa

with

6AXa(sl) = 0 for A (n - 1) (5.60)

j,xa(S2)=O forI=1,...'M; (5.61)

(jM+Ixa (S2))) ... 7 (j _lxa (S2)) i (,ta (S2)) are linearly independent. (5.62)

We are still free to change the Jacobi fields by a transformation of the form

JA JA + fA with functions fA that satisfy fA(sl) 0 for all indices

A = (n - 1) and fI(82) = 0 for all indices I = 1,.. m. As shown in

the proof of Proposition 5.6.2, we may use this freedom in such a way that, in

an appropriately chosen chart, the second order differential equation (5.58)
is satisfied by jxa = jAxa for all A = 1, - - - , (n - 1). Then (5.61) implies that

(jl_+a (S2))) ... I (jmj a (S2)) are linearly independent. (5.63)

Otherwise there would be a non-zero solution jxa(s) = cij,xa(s) + ... +

C!njmXa(S) of the linear differential equation (5.58) with jXa (S2) = 0 and

j_ta (S2) = 0, which is impossible.
In the following we have to use the positive-definiteness assumption of

(c). This assumption implies that, along  , we have (5.49) at our disposal,

with both matrices on the left-hand side positive definite. (Here we make use

of the elementary fact that the inverse of a positive definite matrix is, again,

positive definite.) For A = (n - 1), the JAXa are the components of a

Jacobi field. Hence, inserting jXa = JAXa into (5.51) determines JPb = 6APb

and bk = 6Ak in such a way that (5.46), (5.47), and (5.48) are satisfied, i.e.,

such that

jA = 6AXO'
19

+ JAPa
49

(5.64)
,gxa ON

is a lifted Jacobi field along  for each A (n - 1). With the help of

(5.47) and (5.48) it is readily verified that

(jjpa jrXa - 6.,P. 6jxa) 0 (5.65)
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for any two indices I and J between 1 and (n - 1). By (5-60), this implies
that

JJP. 5IX, - JIP. 5JX' = 0. (5.66)

Evaluating this equation at the parameter value S2, and using (5.61), we find

(5IPajjxa) (S2) = 0 for 1 <I<m<J< (n-1). (5.67)

As 5,p,, is determined by (5.52), with the index I affixed to all variational

derivatives, (5.67) can be rewritten in matrix form as

( (jjXb (S2)) 0)
(Gba(S2)) (Gb(S2)) (6I Ca(32))

0 (5.68)( (Ga (S2)) G(82) ) ( 0 )
for 1 < I < m < J < (n - 1). Moreover, (5.53) and (5.55) imply that

( (,; b (S2)) 0)
(Gba(S2)) (Gb(S2)) (j,,ta (82))

0. (5.69)( (Ga(S2)) G(S2) ) ( 0 )
(5.68) and (5.69) demonstrate that, with respect to a positive definite matrix,
the space spanned by

(j,., a (82)) (6m: a (S2)) (5.70)

is orthogonal to the space spanned by

(J n+ Xa (jll_ 1Xa (ba'n I (S2))) ... 7 (S2))7 (S2)) - (5.71)

By (5.62) and (5.63), this implies that the vectors

(jlta (S2)) i ... I (jM:ta (S2))7 (jM+,Xa (S2))7 ... 7 (j,,_,Xa (S2))7 (: a (S2))
(5.72)

are linearly independent.
Now we define

J'rx"(8) if S 9 - S2

j,ya(S) 8-92 for 1=

j, ba (S) if S = S2 (5.73)

gjya(,) jjXa(S) for J = m + (n - 1).

The Bernoulli-I'H6pital rule guarantees that not only the jJya but also the

J1ya are continuous functions of the parameter s. We have just proven that

(j,ya (S)), . . . , (j _,ya(,)), (.ta(s)) are linearly independent for s = 82. By

continuity, the same must be true for s -A S2 as long as IS - S21 is SUffi-

ciently small. As a consequence, we can read from (5.73) that the vectors
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(j1Xa(S)),..., (6 _Ixa(s)) I (,; a(s)) are linearly independent for s -p S2 and

IS - S21 sufficiently small, i.e., that at those points the Jacobi fields span an

(n - l)-dimensional space transverse to the tangent vector. This completes
the proof for the case that  can be covered by the domain of an appropriate
natural chart and a Hamiltonian.

In the general case one has to use a patching of several charts and to

evaluate all relevant differential equations piecewise. 11

It is important to realize that part (c) of this proposition is not true with-

out the positive-definiteness assumption. A counter-example can be found in

an article by Helfer [62]. What Helfer constructs is a space-like geodesic in a

Lorentzian manifold along which a whole interval is conjugate to some point.
This example can be translated into our terminology by considering a Hamil-

2 (X)PaPb - 1), with gab the contravarianttonian of the form H(x, p) = 1 (gab
components of a Lorentzian metric. Read in this way, Helfer's construction

gives a ray of a strongly regular ray-optical structure along which a whole

interval is conjugate to some point. It should be noted that Helfer's metric

is of class COO but not analytic. As a matter'of fact, it is not difficult to ver-

ify that for analytic Hamiltonians part (c) of Proposition 5.6.3 is true even

without the positive-definiteness assumption. In other words, in the analytic

category it is true that conjugate points are isolated along every ray of a

strongly ray-optical structure. To prove this, it suffices to observe that, in

the notation used in the proof of Proposition 5.6.3, the determinant

J1X1(S) ... 6._1Xn(S) ,p(s)

D(s) = det (5.74)

j1Xn(S) ... &_1Xn(S) &n(s)

must be analytic if the Hamiltonian is analytic. Hence, if D does not vanish

identically, then its zeros must be isolated. We shall come back to Proposi-

tion 5.6.3 in Sect. 7.5 below.

We end this section with a short remark on the characterization of caustics

in terms of (lifted) wave surfaces, rather than in terms of (lifted) rays. To

that end we consider a generalized solution L of the eikonal equation of a

ray-optical structure JV on M and we assume that the Euler vector field E is

nowhere tangent to L. By Definition 5.5.3, only in this case is the notion of

lifted wave surfaces defined. By Definition 5.6. 1, u E L is a critical point of C

if and only if there is a non-zero vertical vector Z,, E T.,,,C. Since all vertical

vectors are in the kernel of the canonical one-form 0, this vector Z.,, must be

tangent to the lifted wave surface S through u. Hence, the existence of such

a vector Z,, indicates that the restriction to 9 of the projection -r, 4 cannot

be an immersion at u, i.e., that T, 4 (S) is not a codimension-one submanifold

of M near -r, 4(u)- In other words, Caustc is the set of all points where

the generalized wave surfaces associated with L fail to be codimension-one

submanifolds.



6. Ray-optical structures

on Lorentzian manifolds

In Chap. 5 we have established the notion of a ray-optical structure on a

bare manifold M. From now on we shall assume that there is a Lorentzian

metric g given on M. This metric is to be interpreted as a spacetime metric

in the sense of general relativity, although for the mathematical formalism it

will not be necessary to specialize to the case dim(M) = 4. We shall assume,

however, that dim(M) > 2 to exclude some pathologies.

6.1 The vacuum ray-optical structure

The metric 9 determines a distinguished ray-optical structure

Arg = I u E T*M I gl*(u,u) = 0 1 (6.1)

on M, just by the construction of Example 5.1.1 with g,, = g. We shall refer

to JV9 as to the vacuum my-optical structure on (M, g). The rays of AP are

the g-light-like geodesics which are to be interpreted as vacuum light rays

according to general relativity. It is important to realize that any conformally

equivalent metric (i.e., any metric of the form j = e
2f

g with some C'

function f : M R) determines the same vacuum ray-optical structure

as g. Up to conformal equivalence, JV9 determines g uniquely. Hence, the

causal structure of the Lorentzian manifold (M, g) is completely coded in

the ray-optical structure Arg.

At each point q E M, Arg n Tq*M consists of two connected components.

(Here our assumption dim(M) > 2 is essential.) Thus, Arg has either one or

two connected components. The Lorentzian manifold (M, g) is called time-

orientable iff Mg has two connected components, cf., e.g., Sachs and Wu

[126], p. 24, or Wald (146], p. 189. In this case, each connected component of

Mg may be viewed as a ray-optical structure in its own right. One of them

gives rays with future-pointing momenta whereas the other one gives rays

with past-pointing momenta. If (M, g) is not time-orientable, i.e., if Ary has

only one connected component, no such distinction can be made in a globally
consistent way.

Ray-optical structures Ar on M which are different from Arg are to be

interpreted as giving light propagation in a medium. If Ar is dilation-invariant

ute
V. Perlick: LNPm 61, pp. 111 - 147, 2000
© Springer-Verlag Berlin Heidelberg 2000
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in the sense of Definition 5.4.1, the medium is called non-dispersive, otherwise

it is called dispersive. The following proposition characterizes the vacuum

ray-optical structure AP in comparison to other ray-optical structures on

M.

Proposition 6.1.1. Let JV be a ray-optical structure on M. Assume that

Ar is regular at all points u E M in the sense of Definition 5.2.1 and that all

the rays of M are g-light-like. Then M C Mg
. (That is to say, if (M, g) is

not time-orientable, M = Mg; if (M, g) is time-orientable, either M = Mg

or Ar is one of the two connected components of Mg.)

Proof. Fix a point q E M. Since all the rays of the ray-optical structure M

are g-light-like, jVq = Ar n T,*M is a light-like hypersurface of the Minkowski

space (T,*M, g#). By elementary Minkowski geometry, this implies that Xq
q

0

is ruled by light-like straight lines. Since jVq is closed in T*M, any such line
q

either runs from infinity to infinity or it runs from the origin to infinity. We

shall prove that the first case is impossible. By contradiction, let us assume

that there is a light-like straight line L in Afq that runs from infinity to infinity.

This means that all light-like straight lines in Arq which are infinitesimally
close to L also have to run from infinity to infinity, without intersecting L.

We decompose the motion of those neighboring lines in the familiar way into

rotation, shear and expansion. Since the lines are surface forming, the rotation

vanishes. Since the neighboring lines have no intersection with L, shear and

expansion also vanish. (Non-vanishing shear gives an intersection with L of

those neighboring lines that lie in the principal shear directions. In the case

of vanishing shear, non-vanishing expansion gives an intersection with L of

all neighboring lines.) Hence, all the neighboring lines have to be parallel to

L. It is easy to verify that this conclusion contradicts our assumption that

M is everywhere regular. Thus, we have proven that X, is ruled by light-like

straight lines running from the origin to infinity. As a consequence, Xq must

*M.be a subset of Ar.9 = Mg n Tq

This proposition can be rephrased in the following way. As long as regu-

larity is not violated, the velocity of light in a medium is necessarily different

from the vacuum velocity of light, at least for some rays. To demonstrate

that the regularity assumption is, indeed, necessary one can consider Exam-

ple 5.1.3 with a light-like vector field U.

For an arbitrary ray-optical structure on our Lorentzian manifold the rays

can be time-like, light-like or space-like; they can even change their causal

character from point to point. If we assume that rays can be used to transmit

signals (and this, after all, is a basic idea of ray optics), the rules of general

relativity prohibit space-like rays. We use the following terminology.

Definition 6.1.1. A ray-optical structure Ar on M is called causal with re-

spect to g if all rays of Ar are everywhere g-time-like or g-light-like.
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The ray-optical structures of Examples 5.1.1 and 5.1.2 are causal with

respect to g iff the metric g,, is "narrower" than g, i.e., iff the inequality

g,,(X, X) < 0 implies the inequality g(X, X) < 0. The ray-optical structures

of Examples 5.1.3 and 5.1.4 are causal with respect to g iff the vector field U

satisfies the inequality g(U, U) < 0.

The question of whether or not all physically reasonable ray-optical struc-

tures on a spacetime have to be causal is a bit subtle. If ray optics is viewed

as an approximation scheme to wave optics, the energy of a wave field does

not propagate exactly along rays; this is true only in an approximative sense.

(We have discussed this issue in Sect. 2.7, at least for a special class of me-

dia.) On the basis of this observation, non-causal rays are not necessarily to

be discarded altogether as unphysical. In the next section we shall introduce

the notions of phase velocity and group velocity for a ray-optical structure

X, and we shall see that X is causal iff the group velocity does not exceed the

vacuum velocity of light. It is well known that there are physically relevant

optical media in which the group velocity exceeds the vacuum velocity of

light. For a comprehensive discussion of this issue we refer to Brillouin [?2].

6.2 Observer fields, frequency, and redshift

Several basic concepts of ray optics which are familiar from elementary text-

books depend on the notion of frequency. For a ray-optical structure on our

Lorentzian manifold (M, g) this notion can be introduced after a time-like

vector field has been chosen.

A time-like C' vector field, given on some open subset U of M will be

called a (local) observer field henceforth. In the case U = M we speak of

a global observer field. This terminology refers to the fact that the integral

curves of such a vector field can be interpreted as the worldlines of observers.

A global observer field exists if and only if (M, g) is time-orientable, see,

e.g., Wald [146], Lemma 8.1.1. In the following we assume that we have

an observer field V given on some open subset U of M which satisfies the

normalization condition g(V, V) = -1. This normalization condition means

that the integral curves of V are parametrized by proper time.

At each point q E U C M, we write Vq for the value at q of the time-

like vector field V. We decompose the tangent space TqM into the one-

dimensional time-like subspace spanned by Vq and its (n - I)-dimensional
orthocomplement

HqM = JY E TqM I gq(Vq,y) = 0} - (6.2)

Similarly, we decompose the cotangent space T.-M into the one-dimensional

subspace spanned by the covector g,(Vq, -) and its (n - l)-dimensional or-

thocomplement

Hq*M = f u E Tq*M I u(Vq) = 0} - (6.3)
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As suggested by our notation, H*M can be identified with the dual space of
q

HqM.
Now let JV be a ray-optical structure on M. To each point u E X we

assign the following quantities, denoting the footpoint of u by q = r. 4 (u).
The frequency

w(u) = -u(Vq) E R; (6.4)

the spatial wave covector

k(u) = u - w(u) g(Vq, E Hq*M (6.5)

the phase velocity

W(U) =
ilk(u)112

k(u) E Hq*M; (6.6)

the ray velocity or group velocity

V(U) =
-(FH) (u)

-Vq EHqM. (6.7)
gq (Vq, (IFH) (u))

Here denotes the norm induced on Hq*M by our Lorentzian metric and

1FH denotes the fiber derivative of a local Hamiltonian H for JV.

In a natural chart these definitions take the following form.

W(X7P)  -Pa Va(X) , (6.8)

ka(x, P)  Pa - W(XI P) gab(X) V6(X) (6.9)

Wa (X,A =

W(X, P)
- ka(X,P) 7 (6.10)

9bc (x) kb (X, p) kc (x, p)

QH

va (X, P) =
*5-P. (X 7 P)

_ Va(X). (6.11)
gcd(X) VCW2H (X, P).9p,l

If we evaluate (6-8) and (6.9) along a classical solution S: U R of the

eikonal equation of M, we reproduce the frequency function (2.38) and the

spatial wave covector field (2.39), respectively. (The parameter a can be

absorbed by a redefinition of the eikonal function S.) This justifies the ter-

minology. The name "phase velocity" for w(u) refers, of course, to the same

situation. At each point U E dS(U), the covector w(u) determines the spatial

velocity of the wave surfaces (="phase surfaces") with respect to the ob-

server field V. Geometrically, the norm of w(u) is a measure for the pseudo-

Euclidean angle ^I between the covector gq (Vq, - ) and the covector u according

to the formula sinh27 = (1 _ I IW (U) 11 2)
-

1, as can be read from equation (6.6).
The ray velocity (6.7), on the other hand, admits an obvious physical

interpretation if evaluated along a lifted ray. The direction of the vector v(u)
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determines the spatial direction in which the ray is moving, viewed with the

eyes of an observer traveling along an integral curve of V; the norm of v(u) is a

measure for the pseudo-Euclidean angle between the tangent vector to the ray

and the tangent vector to the observer's worldline, i.e., for the relative velocity
of the ray with respect to the observer field chosen. This justifies the term
cc

ray velocity". To verify that, moreover, (6.7) is equivalent to the familiar

textbook definition of the "group velocity", we proceed in the following way.

First we have to assume that gq(Vq,1FH(u)) =h 0 to make sure that v(u), as

defined by (6.7), is non-singular. This condition is satisfied if and only if at

the point u the straight line parallel to gq (Vq, - ) in Tq*M is transverse to Xq =

X n Tq*M. (For causal ray-optical structures this transversality condition is

automatically satisfied.) Clearly, this is the case if and only if the manifold

Xq C Tq*M  --- Hq*M x R is the graph of a function f : Hq*M ) R locally
around u. (Globally, however, Arq need not be the graph of a single-valued
function. In typical cases, such as in our Examples 5.1.1, 5.1.2, and 5.1.4, Afq
has several "branches".) Then a quick calculation shows that v(u), as defined

by equation (6.7), is equal to the differential (df)u E (Hq*M)*  --- HqM. In

other words, to calculate v(u) we have to write the frequency as a function

of the spatial wave covector by means of the dispersion relation and we have

to calculate the gradient of this function. This is exactly the usual textbook

definition of the group velocity.

By (6.6), the phase velocity has a zero at points u E Ar where the fre-

quency vanishes, and it has a singularity at points u E X where the spatial

wave covector vanishes. Either case is to be viewed as a pathological behav-

ior and indicates a "bad" choice of observer. (If no other choice is possible,
the ray-optical structure is to be viewed as "bad".) Similarly, we can read

from (6.7) that the ray velocity has a zero at points u E X where FH(u) is

parallel to our observer field and that it has a singularity at points u E X

where FH(u) is orthogonal to our observer field. The first case indicates a

"bad" choice of observer, whereas the second case cannot happen if our ray-

optical structure is causal in the sense of Definition 6.1.1. As a matter of

fact, a ray-optical structure is causal if and only if I I v (u) I I  :, 1 for all U E Ar.

Here 11 - 11 denotes the norm induced by our Lorentzian metric on the vector

space HqM at the point q = -r.; (u). In other words, a ray-optical structure

is causal if and only if the ray velocity group velocity) is bounded by the

vacuum velocity of light.
Note that basically the phase velocity is a spatial covector whereas the

ray velocity is a spatial vector. We can, of course, use the metric g to identify
vectors and covectors. In particular, we can use the metric to make the spatial

wave covector into a vector, i.e., we can introduce, in terms of a natural chart,

the quantity

V (x, p) = gab (x) kb (X 7 P) - (6.12)

This vector is sometimes called the vector of normal slowness, following Sir

William R. Hamilton. Here, "normal" refers to the fact that, along any clas-
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sical solution of the eikonal equation, this vector is orthogonal to all spatial
vectors which are tangent to the wave surfaces; "slowness" refers to the fact

that the phase velocity decreases if the length of this vector increases.

The properties of a specific ray-optical structure are nicely visualized by

indicating, for a fixed frequency, the phase velocity and the group velocity for

each spatial direction. To make this idea precise we fix a ray-optical structure

M, a normalized observer field V, a point q E M, and a real number W,, E R.

Then we define the sets

Q * w(u) u E JV,, w(u) = W,, c Hq*M c Tq*M, (0.13)

2'= v(u) u E Xq, w(u) = w,,, C HqM C TqM - (6.14)

 31* is usually called the figuratrix of the medium whereas !a, is called the

indicaftix. Both names originate from variational calculus.

In general, figuratrix and indicatrix depend on the frequency value W,,,

i.e., if we switch from w,, to ew, with some real number c, figuratrix and

indicatrix undergo a deformation. If we restrict ourselves to the case c > 0

(i.e., if we fix the sign of the frequency), there is no such deformation, for

any observer field and for any point q E M, if and only if our ray-optical
structure is dilation invariant. In other words, the dilation invariant case

is characterized by the property that phase velocity and group velocity are

independent of the frequency, as long as the sign of the frequency is fixed. This

is the defining property of a non-dispersive medium according to standard

textbooks on optics. We have thus justified our earlier claim that for a ray-

optical structure on a Lorentzian manifold the attributes "dilation invariant"

and "non-dispersive" are synonymous.

As an example, we consider a Hamiltonian of the form

H(x, p) = !(gab(X)PaPb + h(x)) (6.15)
2

in natural coordinates, which comprises Example 5.1.1 (h(x) = 0 and

9ab(X) = gab(X) ) and Example 5.1.2 (h(x) :A 0 and gab(X) = gab(x)1h(x)).
0 O 
Then the figuratrix at the point with coordinates x is a sphere of radius

W2/ (W2 - h(x)) around the origin in Hq*M, whereas the indicatrix is a sphere
0 0

2 IW2of radius (WO - h(x)) 0
around the origin in HqM.

For a pathological ray-optical structure of the type given in Example 5.1.3,

on the other hand, the figuratrix is a sphere through the origin and the

indicatrix is a single point.
Now we turn to the question of how the frequency changes along a ray. In

other words, we want to discuss the general relativistic redshift (or blueshift)
for light propagation in media. Along any curve in M, given in terms of a

natural chart as a map s 1 ) (x(s),p(s)), differentiation of the frequency

function (6.8) yields

d W(X(S),P(S)) = -p.(S) Va(X(S)) - pa(S)
'V'(X(S)) : b (S). (6.16)

TS IgXb
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If we introduce the canonical lift V of the observer field V according to (5.24),
equation (6.16) can be rewritten in coordinate-free form as

d
W (X(S), P(s))T.9 (6.17)

for any C' curve 6: 1 JV. Since A( is transverse to the fibers of T*M,
IV can be decomposed, at each point of Ar, into a vector tangent to JV and a

vector tangent to the fiber. (This decomposition is, of course, not unique.) If

 is a lifted ray, only the component tangent to the fiber gives a contribution

to (6.17). Therefore, it is justified to say that a C' curve  : I ) Ar satisfies

the redshift law of lifted rays with respect to the observer field V if

sk.) WS), QW) = 0 (6.18)

for all C' maps Q: I ) TAr with Q(s) E T (,)Ar and T-r., 4(Q(s)) =

Y for S E L The redshift law for lifted rays can be expressed more

conveniently if we use a Hamiltonian H for A(. Then a lifted ray 6: 1 A(

with a parametrization adapted to H (i.e., such that (5.9) holds with k 1)
satisfies, by (6.17), the redshift law

d
w (x(s), p(s)) = dH(V)TS (6.19)

To illustrate the redshift law with an example, we consider a ray-optical
structure that is generated by a Hamiltonian of the form

H(x,p) =.I gab(X)2 0 PaPb + C (6.20)

where gab are the contravariant components of a Lorentzian metric g,, and
0

c is a real constant. Our Examples 5.1.1 and 5.1.2 are of this form. A lifted

ray of such a ray-optical structure gives a geodesic of the metric go if pro-

jected to M. The parametrization is adapted to H if this geodesic is affinely

parametrized and if, in addition,

Pa(s) :--: (go)ab(X(S)) :tb (S) (6.21)

In this situation, the frequency with respect to a normalized observer field V

is given by

W(X(8)1P(S)) =: -(go)ab(X(S))  bb (S) Va (X(S)) (6.22)

along the lifted ray.

If we switch to coordinate-free notation, denoting the lifted ray by  : I

Ar and its projection to M by A =,T., 4 o  , (6.22) implies

W( (S2))
=

(go)A(a2) ( (S2)) VX(52))
(6.23)

WWSO) (90)A(so Ns'), vxoo)
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for any two parameter values si, S2 E I. Please note that  enters into the

right-hand side of (6.23) only in terms of its projection X As (6.23) remains

true after an affine reparametrization, it gives the redshift along any ray

which is parametrized affinely (as a geodesic of g,,).
The redshift formula (6.23) applies, in particular, to the vacuum ray-

optical structure, where we have to read g,, = g. In this special context equa-

tion (6.23) is well known. It was found by Kermack, McCrea and Whittacker

[71] and rediscovered by Schr6dinger [129]. A particularly clear derivation was

given by Brill [20]. As an alternative, the vacuum redshift formula can also

be expressed in terms of acceleration, expansion and shear of the observer

field V. Details can be found in articles by Ehlers [37], by Hasse and Perlick

[581 and by Perlick [107].
Now we turn back to arbitrary ray-optical structures. The following propo-

sition characterizes the redshift-free case.

Proposition 6.2.1. Consider a ray-optical structure Ar and a global ob-

server field V with g(V, V) = -1 on M. Then the following two properties

are equivalent.

(a) The frequency with respect to V is constant along each lifted ray  of Ar.

(b) V (=- 9,v. (Please recall Definition 5.3.2 of the symmetry algebra gAr.)

Proof. The general redshift formula (6-17) implies that (a) is true if and

only if the function fl(X, V) vanishes identically on Ar whenever X is a

characteristic vector field on Ar. Since, at each point of Ar, the kernel of

Q(X, -) coincides with the tangent space to Ar, this condition is satisfied if

and only if V is tangent to Ar at all points of Ar. By Definition 5.3.2, this is

equivalent to (b). 0

For an arbitrary ray-optical structure Ar on M the symmetry algebra 9Ar

need not contain a time-like vector field normalized to g(V, V) = -1. Thus,

only in very special cases is it possible to find a normalized observer field V

such that the frequency is constant along all lifted rays.

Proposition 6.2.1 can be specialized to our standard examples for which

we have analyzed the symmetries in Sect. 5.3. This gives the following results.

For the ray-optical structures of Example 5.1.1 the frequency with respect

to V is constant along each lifted ray iff V is a conformal Killing vector field

of the metric g,,, i.e., iff the Lie derivative Lvg,, is a multiple of g,,. (In the

vacuum case g,, = g, the normalization condition g(V, V) = - 1 then requires

V to be a Killing vector field, i.e., LVg = 0.) For the ray-optical structures of

Example 5.1.2 the frequency with respect to V is constant along each lifted

ray iff V is a Killing vector field of the metric g,,, i.e., iff Lvg,, = 0. For the

ray-optical structures of Example 5.1.3 the frequency with respect to V is

constant along each lifted ray iff the Lie bracket [V, U] is a multiple of U.

Finally, for the ray-optical structures of Example 5.1.4 the frequency with

respect to V is constant along each lifted ray iff [V, U] = 0.
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It is also interesting to consider normalized observer fields which are not in

gAr but can be rescaled to give an element of gAr. In this case the redshift does

not vanish but it admits a representation in terms of a "redshift potential".
This situation, which is of particular interest in cosmology, is chaxacterized

by the following proposition.

Proposition 6.2.2. Consider a ray-optical structure M and a global ob-

server field V with g(V, V) = -1 on M. Then for any C1 function

f:M ) R the following two properties are equivalent.

(a) f is a redshift potential in the following sense. If 6: 1 JV is a lifted

ray of M with projection A = -r. , o 6, the frequency w with respect to V

satisfies

ef const. (6.24)

(b) ef V E 9,v.

Proof. We write W = ef V. Then the general redshift formula (6.17) implies

d
ef(-(8))wWS0 = sks) WS), vv_ (-)) (6.25)

TS (
as can be easily checked with the help of the coordinate expression (5.24) for

the canonical lift of a vector field. The right-hand side of (6.25) vanishes for all

lifted rays if and only if W is tangent to JV at all points of A(, i.e., if and only

if W E 9Ar - (This argument is analogous to the proof of Proposition 6.2.1).
13

If the frequency has no zeros, (6.24) implies

ln
W ( (S2))

= f (A(Sl)) - f (A(S2)) (6.26)
W (6(S1))

for any two parameter values si and S2. It is this expression to which the

name "redshift potential" refers. By Proposition 6.2.2, a ray-optical structure

admits a redshift potential, for an appropriately chosen observer field, if and

only if there is a time-like vector field in the symmetry algebra gAr. A ray-

optical structure with this property is called "stationary", a notion we are

going to discuss in full detail in Sect. 6.5 below. For the vacuum ray-optical

structure the notion of a "redshift potential" (or "redshift function") was

investigated in papers by Dautcourt [30] and by Hasse and Perlick [581. Please

recall that for the vacuum ray-optical structure M = JV9 the condition W E

9,V means that W is a conformal Killing vector field of the metric g.
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6.3 Isotropic ray-optical structures

With the Lorentzian metric g given on M we can define, for each point

q E M, the set of Lorentz transformations on the cotangent space Tq*M by

Lor(q) = A: Tqq*M  Tqm*M1 (6.27)

A is a linear automorphism with g*(A(.),A(.)) =q N

The Lorentz transformations Lor(q) foliate the punctured cotangent space
0 0

Tq*M into orbits. Here, a subset Q of Tq*M is called an orbit iff it is of the
q

0

form Q = JA(u) I A E Lor(q)j for some u E T*M. The geometry of the
q

orbits is sketched in Figure 6.1.

0

T*ql

Fig. 6.1. The orbits of Lor(q) are the g-light-like cone, a family of g-space-like
two-shell hyperboloids and a family of g-time-like one-shell hyperboloids.

Please recall that we have defined the structure group of a ray-optical
structure in Definition 5.3.3. The next definition characterizes the situation

that, at a point q E M, the set of Lorentz transformations (6.27) is completely
contained in the structure group of M.
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Definition 6.3.1. A ray-optical structure Ar on (M, g) is called Lorentz in-

variant at a point q E M iff A(u) E Arq for all u E Xq and A E Lor(q). Ar is

called Lorentz invariant iff it is Lorentz invariant at all points q E M.

If a ray-optical structure Ar is Lorentz invariant at a point q, JVq must be

an orbit of Lor(q) or a union of several orbits which are separated by open
0

neighborhoods in T*M. If Ar is causal, only space-like and light-like orbits
q

come into question, i.e., the one-shell hyperboloids of Figure 6.1 are excluded.

The following proposition is rather trivial.

Proposition 6.3.1. Let Ar be a ray-optical structure on (M,g) which is

dilation invariant and Lorentz invariant at all points q E M. Then JV is the

vacuum ray-optical structure, A( = Arg.

Proof. By assumption, jVq is an orbit of Lor(q) or a union of several orbits,

and jVq is dilation invariant. Clearly, the only codimension-one submanifold

0

Arq C T*M with these properties is the double cone Arq = jVq9. El
q

This proposition implies that a non-dispersive medium necessarily has to

break Lorentz invariance.

The class of Lorentz invariant ray-optical structures is rather small. We

get much laxger classes if we require invariance not under the full Lorentz

group but only under certain subgroups. If we fix a vector Uq E TM with

gq(Uq, Uq) = -1, we can consider the subgroup of spatial rotations

Rot(Uq) = { A E Lor(q) I A(gq(Uq) *)) = gq(Uqi *) 1 (6.28)

with respect to Uq- This gives rise to the following definition.

Definition 6.3.2. A ray-optical structure Ar on (M,g) is called isotropic

at a point q E M with respect to a normalized time-like vector Uq E TqM

iff A(U) E Arq for all U E jVq and A E Rot(Uq). JV is called isotropic with

respect to a global observer field U with g(U, U) = -1 iff Ar is isotropic at

all points q E M with respect to the vector Uq = U(q) ( = U evaluated at q ).

Instead of "isotropic" one might use more precise attributes such as "spa,

tially isotropic" or "invariant under spatial rotations". For the sake of brevity,

however, we stick with the terminology of Definition 6.3.2.

If a ray-optical structure is Lorentz invariant at q, then it is in particular

isotropic at q with respect to all normalized time-like vectors Uq E T.M. In

addition, we already know some examples of isotropic ray-optical structures

that need not be Lorentz invariant. In Example 2.5.1 of Part I we have derived

the Hamiltonian

1

(
gab (x) + Ua (x) Ub (X)

_ Ua (X) Ub(X)H(x,p) =
2 n(X)2

Pa Pb (6.29)
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for light propagation in a linear and isotropic electromagnetic medium, cf.

eq. (2.87). Clearly, this Hamiltonian generates a ray-optical structure which

is isotropic with respect to the rest system U of the medium. We are now

going to prove that this example is much more general than it seems to be.

As a matter of fact, every isotropic ray-optical structure is locally generated
by a Hamiltonian of the form (6.29) provided that it is dilation invariant. If

it is not dilation invariant, the only modification is in the fact that the index

of refraction must be allowed to depend on the frequency, i.e., we have to

write n(x, -U'(x)p,,) instead of n(x).
It needs a little bit of preparation to prove this fact. Let us assume that

the ray-optical structure X on (M, g) is isotropic with respect to an observer

field U. For notational convenience we introduce a natural chart (x, p) around

a point u E Ar. We have to assume that neither the frequency W(x,p), given

by (6.8) with V" = U', nor the spatial wave covector k,, (x, p), given by (6.9)
with Va = Ua, has a zero at u. Then there is a neighborhood W C T*M

of u on which frequency and spatial wave covector are different from zero. If

this neighborhood W has been chosen appropriately, our isotropy assumption

guarantees that the norm Vgab(x) ka (X, p) kb (X 7 P) of the spatial wave covec-

tor must be a function of x and w(x, p) on Xn W, as is nicely illustrated by
the orbit structure of Figure 6.1. Hence there is a strictly positive real valued

function n, defined on some subset of M x R, such that

n(x,w(x,p))jw(x,p)j =  gab(x)ka(X,p)kb(X,P) (6.30)

on Ar n W. This construction locally assigns a frequencyo-dependent index of

refraction n to any isotropic ray-optical structure. Comparison with (6.10)
shows that n is reciprocal to the norm of the phase velocity. Since we use units

making the vacuum velo,'city of light equal to 1, this can be rephrased as saying
that 1/n gives the phase velocity in units of the vacuum velocity of light. It

is to be emphasized that, as long as there are no additional assumptions

on our isotropic ray-optical structure Ar, the index of refraction is a local

concept. Here, "local" refers in particular to the necessity of restricting the

fibers of T*M. Globally, n might be a "multi-valued function" corresponding
to various "branches" of JV-

On an appropriate neighborhood W C T*M, at least, the index of refrac-

tion is well-defined and can be used to introduce a local Hamiltonian

1

(
gab (X) + Ua (X) Ub(X)

_ Ua(X) Ub(X)H(x,p) =
2 n(x, -UC(X)P,)2

PaPb (6.31)

It is an immediate consequence of (6.30) that H vanishes on Ar n W. More-

over, our assumption that the spatial wave covector has no zeros implies
that (,OH/c9pa) has no zeros on Ar n W. Hence, (6.31) gives, indeed, a local

Hamiltonian for our ray-optical structure Ar. If n is frequency-independent,

i.e., constant with respect to its second argument, the rays determined by
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the Hamiltonian (6.31) are the light-like geodesics of a Lorentzian metric. In

the frequency-dependent case they are associated with a sort of "generalized
Lorentzian metric" investigated in detail by Miron and Kawaguchi [97].

To sum up, we have proven that any isotropic ray-optical structure is lo-

cally generated by a Hamiltonian of the form (6.31) near any point ofJV where

frequency and spatial wave covector are non-vanishing. Here, frequency and

spatial wave covector are meant with respect to the normalized observer field

U distinguished by the isotropy assumption. Hence, a ray-optical structure on

(M, g) which is isotropic with respect to some given normalized observer field

U is unambiguously characterized by an index of refraction n: M xR R+,

on a neighborhood 'YV C T*M near any point where the ray-optical structure

is well-behaved. It is easy to check that such a ray-optical structure is

(a) causaliff

n(x, w) + WW)2 Ln (X, W)
2

 : 1; (6.32)
n(x,  W

(b) dilation-invariant iff

,On
(X, W) = 0; (6.33)

TW

(c) Lorentz invariant iff n is of the form

n(x, W)2 = I _
h(x)

(6.34)
W2

*

From (b) and (c) we can read an alternative proof of Proposition 6.3.1. (c) is

just a different way of saying that a Lorentz invariant ray-optical structure

is locally generated by a Hamiltonian of the form

H(x,p)  ,!(gab(x)2 PaA + h(x)) (6.35)

Please note that the Hamiltonian (3.46) for light propagation in a non-

magnetized plasma is of this form. In this case the function h(x) is given

= WP (X)2 =
e2 0

(X).by the plasma frequency (3.51), h(x) mn

6.4 Light bundles in isotropic media

In this section we investigate the dynamics of infinitesimal bundles of light

rays in an isotropic non-dispersive medium, thereby generalizing several stan-

dard results of ordinary optics. For our purposes it will be necessary to as-

sume that the medium is irrotational and that it is globally characterized

by a single-valued index of refraction which has no zeros and no singulari-

ties. According to the results of the preceding section, this implies that the
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rays are exactly the light-like geodesics of a Lorentzian metric go, called the

"optical metric" henceforth. The contravariant components gob of the optical
metric are determined by writing (6.29) in the form H(x,p) = jgab(X)Papb,2 0

i.e., go is related to the spacetime metric g by

go(X, Y) = n2 g(X, Y) + (n2 _ 1) g(U7X) g(UIy) (6.36)

for all vector fields X and Y on M. Here, U is a given observer field with

g(U, U) -1 on M which is supposed to be hypersurface-orthogonal and

n: M R+ is a given C' function. In the following we refer to U as to the

"rest system" of the medium and to n as to the "index of refraction". These

assumptions include, of course, vacuum light propagation as the special case

n = 1.

Now let us fix a ray A: I M, i.e., a light-like go-geodesic, where

I denotes a real interval. For the sake of simplicity we choose an affine

parametrization such that the tangent field K I TM of A sat-

isfies the equations

go(K, K) = 0 and (Vo)K K 0 (6.37)

where Vo denotes the Levi-Civita connection of the metric go. Infinitesimally
neighboring rays are mathematically modeled by Jacobi fields along A. (Please
recall that Jacobi fields are defined, for arbitrary ray-optical structures, by
Definition 5.6.2.) In the case at hand, a Jacobi field along A is a C' map

J: I TM with rm o J = A that satisfies the following two conditions.

(Vo)K (Vo)K J - Ro(K, J, K) is a multiple of K, (6.38)

go(K, J) = const.
, (6.39)

where Ro denotes the curvature tensor of the connection Vo. (6.38) assures

that "the arrow-head of J is tracing a neighboring go-geodesic" and (6.39)
assures that this neighboring geodesic is again go-light-like.

For analyzing the motion of such Jacobi fields it is convenient to refer

to an appropriate basis of vector fields along A. We introduce the following
definition which makes sense for arbitrary curves A in our Lorentzian manifold

(M, g) -

Definition 6.4.1. Let A: I M be a C' curve and denote its tangent

field by K. Then (El, E,,-2) is called a Sachs bein along X iff for A, B

1,...,n - 2

(a) EA is a C1* vector field alongA, i.e., EA: ITM with -rM o EA = A;

(b) g(EA, EB) = JAB and g(K, EA) = 0;

(C) g(EA, VKEB) = 0
-

A Sachs bein is called adapted to an observer field V iff the vector EA (s) is

g-orthogonal to the vector Vx(,) for all A = 1, - . . ,
n - 2 and all 8 E I.
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Whenever refering to a Sachs bein we use the summation convention for

capital indices A, B, C.... running from I to n - 2.

It is easy to check that, for an arbitrary curve X and an arbitrary observer

field V on M, there is a Sachs bein along \ which is adapted to V and that

it is unique up to transformations of the form

EA (s) m

 OBA EB (S) (6.40)

where (OBA) is a constant orthogonal matrix, i.e., ODA OCB 8DC   6AB- In

the literature, the name "Sachs bein" is usually restricted to the case that A is

a light-like geodesic with respect to g. In this situation, which was considered

in the original paper by Sachs [125], condition (b) of Definition 6.4.1 assures

that K, Ej,. - -) E,-2 span the g-orthocomplement of K and condition (c)

requires that, apart from the freedom of adding multiples of K, each EA is

V-parallel along A.

Here, however, we are considering the case that A is a light-like geodesic

of the optical metric rather than of the spacetime metric. In the following we

fix a Sachs bein along A that is adapted to the distinguished observer field

U, i.e., that satisfies in addition to (6.42) and (6.43) the condition

g(U, EA) ' go (Ui EA)  0
- (6.41)

With the help of (6.36) and (6.41), conditions (b) and (c) of Definition 6.4.1

can be rewritten in terms of the optical metric in the following way.

go(EA, EB) = n2 JAB and go(K, EA) = 0
, (6.42)

(Vo)KQEA) is a multiple of K. (6.43)
n

Whereas (6.42) is obvious, it needs a bit of work to verify (6.43). One has to

calculate the difference tensor V - V,, from (6.36) and to use the assumption

of U being hypersurface-orthogonal ( = irrotational).
In this situation every vector field J along A can be represented as a linear

combination

j(S) = jA (s) EA (s) + v(s) U,\(,) + w(s) K(s) , (6.44)

with scalar coefficients jA(S), v(s) and w(s). Jacobi fields are determined by

inserting (6.44) into (6.38) and (6.39). This gives conditions on the coefficients

jA and v but not on w because a Jacobi field remains a Jacobi field if an

arbitrary multiple of the tangent field is added. If v = 0, J is g-orthogonal

to the observer field U up to the irrelevant term proportional to the tangent

field, i.e., the connecting vector from X to the neighboring ray is purely spatial

with respect to the distinguished observer field U. (In the vacuum case n = 1

this is true for all observer fields simultaneously.) Hence, the dynamics of

infinitesimally thin bundles of light rays in our isotropic medium is given by

inserting (6.44) with v = 0 into (6.38) and (6.39). As (6.39) is automatically



126 6. Ray-optical structures on Lorentzian manifolds

satisfied with const. = 0, we only have to care about (6.38). This gives the

system of second order linear differential equations

-7n(s)d2 (n(s) jA(S)) = SA
B (S) jB(S) (6.45)ds

for the coefficients jA' where

sAB = jAC go (Ec, Ro(K, EB, K)) (6.46)

Here and in the following we write n(s) for n (A(s)). Owing to the symmetries
of the curvature tensor, SA satisfies the identityB

sAB 6BC = SCB 6BA (6.47)

If the Sachs bein is changed according to (6.40), SAB undergoes the trans-

formation

sAB(S) jAC ODC OFB SGF(S) JDG (6.48)

Now let us assume that we have a matrix valued function s L(s) =

(LAB (8)) that satisfies the matrix analogue of the differential equation (6.45),
i.e.,

n(s)
d2 (n(s)LAC(S)) = SAB (s) L13c(s) (6.49)ds2*

Then any (Cl'...' e-2 ) E Rn-2 determines a solution

jA(S) = LAB(S) CB (6-50)

of (6.45) and, upon inserting into (6.44) with v = 0 and w arbitrary, a

solution J of (6.38) and (6.39) with const. = 0. In other words, such a matrix-

valued function L determines an (n - 2)-parameter family of infinitesimally

neighboring rays around the central ray A. If det(L(s)) : 0, those neighboring

rays fill the space (not the spacetime!) around A completely. For that reason,

we call a solution L = (LAB) of (6.49) that satisfies det(L(s)) 54 0, with

the possible exception of some isolated parameter values s, an infinitesimal
bundle of rays around A. More precisely, L should be called the representation
of such a bundle with respect to the Sachs bein chosen. If we change the Sachs

bein, we have, of course, to change L according to

LAB(S) m

 6AC ODC OFBLGF(S) 3DG (6.51)

Since n has no zeros, (6.49) can be solved for
d2 LAc(s). Thus, arbitraryds-7

initial values for L and for its first derivative determine a unique solution.

Invertibility of L(s) for almost all parameter values s implies that the

equation

A jAC(S)D B(s)L'c(s) = , (6.52)
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defines a matrix D(s) = (DAB(S)) for almost all parameter values s. (At
those isolated values s where det(L(s)) = 0, some components of D become

infinite.) Hence, the jA from (6.50) satisfy

jA(S) = DAB (s) jB (S) (6-53)

for almost all s. (6.53) demonstrates that the matrix D(s) measures the

motion of the infinitesimal bundle around A with respect to the Sachs bein

chosen. If we decompose D(s) into a symmetrical and an antisymmetrical

part according to

DAB(S) = OAB(S) + WAB(S) (6-54)

oAB (S) jBC - OCB(S) jBA 0, (6-55)

WAB (s) jBC + WCB(S) jBA 0, (6.56)

the symmetrical part OA (s) gives the deformation and the antisymmetricalB

part WAB (S) gives the rotation of the infinitesimal bundle with respect to the

Sachs bein. The symmetrical part can be further decomposed according to

oA B(S) = 07AB(S) +
0(s) jA (6.57)
(n-2) B

where O(s) = OAA(s) gives the expansion and a
AB(S), which is defined

through (6.57), gives the shear of the infinitesimal bundle with respect to

the Sachs bein.

It is easy to derive propagation equations for these quantities. If we calcu-

late the derivative of (6.52), we find that the second order differential equation

(6.49) for LAB implies the first order differential equation

j)AB(S) +
24(') D

A
B(S)

n(s)

I sA A  (S) 6A
(6.58)

n(s)2
B(S) - D C(s)DCB(S) -

n(s)
B

for DAB. Symmetrization respectively antisymmetrization results in

6A 1 SA _ OAC(S)B(S) n(s-)y B (S) OCB(S)
(6.59)

WA C 2nC(S)W B
Lj ) OAB (S) jA

n(s) n(s) B

ciAB(S) = U)
A
C(S) OCB (8) OAC(S) WCB(S) -   s) A

B(S) (6.60)
n(s)

For the vacuum case n = 1, the propagation equations (6.59) and (6.60) are

well-known and can be found in many textbooks on general relativity, see,

e.g., Wald [146], p. 222. In particular, the trace of (6.59) gives the well-known
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focusing equation for vacuum light rays in the case n = 1. Please note that

in the generalization considered here SAB(S) involves the curvature tensor of

the optical metric according to (6.46).
Now we use the propagation equations (6.59) and (6.60) to prove three

theorems on light propagation in a general-relativistic medium of the kind

under consideration and thus, in particular, in vacuum. All three have famous

counter-parts in ordinary optics.

Theorem 6.4.1. In an isotropic, dispersion-free and non-rotating medium

the following holds true. If for an infinitesimal bundle of rays the rotation

vanishes for one parameter value s, then it vanishes for all s.

Proof. This is an immediate consequence of the fact that the rotation satisfies

the homogeneous differential equation (6.60). 11

This theorem can be viewed as a general relativistic analogue of the Malus

theorem of ordinary optics. In its most elementary version, found by Malus in

1808, this classical theorem can be formulated in the following way (cf., e.g.,

Born and Wolf [161). A family of straight lines that starts surface-orthogonal
remains surface-orthogonal (a) after reflexion at an arbitrarily curved surface

according to the usual reflexion law and (b) after refraction at an arbitrarily
curved surface according to Snell's law. In other words, a surface-orthogonal
bundle of light rays remains surface-orthogonal after passing through any sys-

tem of mirrors and lenses. Theorem 6.4.1 gives a similar statement for light

rays in an isotropic, non-dispersive, and non-rotating medium on a general-
relativistic spacetime. The analogy comes from the fact that a two-parameter

family of straight lines in ordinary Euclidean 3-space is surface orthogonal

iff, around any member of this family, the infinitesimally neighboring mem-
bers are irrotational. In this case rotation is to be measured with respect to

ordinary Euclidean parallel transport.
The other two theorems refer to infinitesimal bundles of rays which are

homocentric, i.e., to the case that L(s) is the zero matrix for one particular

parameter value s.

Theorem 6.4.2. In an isotropic, non-dispersive and non-rotating medium

the following holds true. If an infinitesimal bundle of rays is homocentric,
then its rotation vanishes.

Proof. Let L = (LAB) be a solution of the differential equation (6.49) which

can be rewritten in matrix notation as

-7n(s) d
2

(n(s)L(s)) = S(s) L(s) (6.61)da

with S = (SAB)- Owing to (6.47), transposition of (6.61) results in

n(s)
d2 (n(s)LT(s)) = LT(S) S(S) (6.62)dT
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where denotes the transpose of a matrix. (6.61) and (6.62) together
imply that the matrix

C(s) = n(8)2 (.LT (s) L(s) - LT(S).L(S)) (6.63)

has vanishing derivative, ( (s) = 0. Hence, C(s) is a constant matrix. If L is

a homocentric infinitesimal bundle, L(s,,) is the zero matrix for some specific
parameter value s,,. So C(s) = C(s,,) must be the zero matrix for all s. With

C = 0, we multiply the matrix equation (6.63) from the left by (L-1)T(s)
and from the right by L-1(s). This can be done for almost all parameter
values s. By (6.52), the resulting equation reads DT(S) - D(s) == 0, i.e., the

antisymmetrical part of D(s) vanishes. 0

This theorem is analogous to the elementary fact that, in ordinary optics,
homocentric bundles are surface-orthogonal.

We now turn to the last of our three theorems which is of particular
relevance for cosmology.

Theorem 6.4.3. (Reciprocity theorem) In an isotropic, dispersion-free
and non-rotating medium, the following holds true. If L, and L2 are two

infinitesimal bundles around the same central ray A and if both Ll and L2

are homocentric, with L, (sl) = 0 and L2 (S2) = 0, then

I det (n(S2) L, (S2))l- jdet(n(s1)L2(S1))j
(6.64)

1 det (n(si).Li (si)) I jdet(n(S2)-WS2))j

Proof. We use the same matrix notation as in the proof of Theorem 6.4.2. By

assumption, the differential equation (6.61) and its transposed version (6.62)
are satisfied by L = L, and L = L2. This implies that the matrix

C12(S) = n(S)2 (LT (s) L2(S) - L
T
(S) L2(S)) (6.65)1

 

I

has vanishing derivative, t12(S) = 0. Hence,. C12(S) is a constant matrix. In

particular, the equation

C12(Sl) = C12(S2) (6.66)

has to hold. Owing to our hypothesis Ll(si) = 0 and L2(32) = 0, (6.66)
simplifies to

)2 jTn(s, (si) L2(SI) = --:-n(S2)2 LT (S2) L2(S2 (6.67)1

(6.64) is an obvious consequence of (6.67). 0

Please note that the denominators in (6.64) are different from zero since

L, and L2 are infinitesimal bundles and n is strictly positive.
To give a physical interpretation to this theorem we now assume that our

underlying Lorentzian manifold is 4-dimensional and that, with respect to the
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time orientation defined by the distinguished observer field U, A(82) is in the

future of A(si). We restrict our consideration to the section of X between these

two points. We consider the totality of all Jacobi fields, defined via eq. (6.50)
with L = LI, with 6AB C

A cB < 1. This can be interpreted as a pencil of

light rays issuing from the point A(si). Similarly, the analogous construction

carried through with L = L2 gives a pencil of light rays received at the point

A(S2). Now the numerators in (6.64), up to a factor -x and up to the square of

the index of refraction, give the cross-sectional areas of these two pencils at

the points A(si) and A(S2), respectively. It is important to realize that these

quantities have an invariant geometrical meaning, independent of the Sachs

bein and of the g,,-affine parametrization chosen for A. On the other hand, the

denominators in (6.64), again up to the square of the index of refraction, are

measuring the opening angle of the respective pencil at its focal point. These

quantities are, again, independent of the choice of the Sachs bein; however,
they do depend on the affine parametrization chosen for A. If we switch to

another affine parametrization by a transformation s i ) as + b with real

constants a : A 0 and b, on both sides of (6.64) the denominator is getting
a factor jaj-1-. As for a ray (i.e., for a g,,-light-like geodesic) the choice of a

particular affine parametrization is a matter of arbitrariness, this argument
shows that the denominators of (6-64) are "unphysical" in the sense that they
cannot be measured. Therefore we introduce the quantities

dl,,m =
jdet(Lj(S2))

g,\(81) (K(sl), U(sj)) (6.68) Idet (Li (si)) I

dang =  jdet(L2(Sl)) jg,\(. ) (K(S2), U(S2))l 1 (6.69)
jdet(12(S2))j

where U(s) denotes the distinguished observer field at the point A(s). dj"nj
and dang are invariant with respect to changing the affine parametrization of

,\ since the tangent field K in the numerator is stretched with the same factor

as the derivative operator (overdot) in the denominator. Here it is essential

that we restrict to the case dim(M) = 4 such that L, and L2 are (2 x 2)-
2matrices. djum relates the cross-sectional area of the Li-pencil at \(S2) to its

opening angle at A(si) where the latter is now measured as a solid angle in

the local rest space of the observer U(si), see Figure 6.2. In cosmology djuln is

known as the corrected luminosity distance from A(sj) to A(S2), whereas the

analogously defined quantity dalg is known as the angular diameter distance

from A(si) to A(S2). Now the reciprocity law (6.64) can be rewritten in the

form

1)2 1g,
dium = d

n(s \(,,J) (K(si), U(si)) 1
(6.70)ang n(82)2 19MS2) (K(S2) , U(S2))

Please note that, by (6.23), the factor
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-52)

;2)

A(SI)

Fig. 6.2. This illustration shows a pencil with central ray A, issuing from a light
source at A(si) to an observer at A(82). The corrected luminosity distance relates

the cross-sectional area of the pencil at A(82) to its opening angle at A(si), measured
in the rest space of the observer U(si). The angular diameter distance is defined in

an analogous manner for a pencil around A with focus at A(.52)-

g,\(,,) (K(si), U(si))
-

(K(si), U(si))
(6-71)

9X(32) (K(S2)i U(S2)) (911))1(12) (K(82)i U(S2))

gives the redshift under which U(si) is seen by U(S2)-
In the vacuum case n = 1, (6.70) gives a remarkable relation between

corrected luminosity distance, angular diameter distance and redshift. (The
observers U(si) and U(S2) are arbitrary in the vacuum case.) As to the

literature on this subject we refer to Etherington [41] who discovered the law

(6.70) for the case n = 1; to Ellis [40] whose proof of the reciprocity law for

the case n = I served as a model for our proof of Theorem 6.4.3; and to

Schneider, Ehlers and Falco [128], Sect. 3.5, who give a detailed discussion

of the reciprocity theorem for vacuum light rays and of its relevance for

cosmology. It should also be mentioned that the name "reciprocity theorem"

goes back to Straubel (1351 who introduced the analogue of Theorem 6.4.3

in ordinary optics. This classical reciprocity theorem is closely related to the

socalled sine condition for stigmatic imaging. The latter can be traced back

well into the 19th century to Clausius, Helmholtz and Abb6. It is discussed,

e.g., in the standard textbook by Born and Wolf [16], p. 166.

6.5 Stationary ray-optical structures

Recalling Definition 5.3.2 of the symmetry algebra gAr, stationarity of a ray-

optical structure A( can be introduced in the following way.
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Definition 6.5. 1. A ray-optical structure Ar on (M, g) is called stationary
iff there is a vector field W E gAr which is everywhere time-like, g(W, W) < 0.

If, in addition, the one-form g(W, -) is globally (or locally, respectively) of
the form g(W, - ) = h dt with some scalar C' functions h and t, Ar is called

globally (or locally, respectively) static.

In the static case the spacetime is foliated into hypersurfaces t = const.

which are g-orthogonal to the integral curves of W. It follows from the well-

known Frobenius Theorem that locally such a foliation exists if and only if

the one-form K = g(W, satisfies the equation r. A dk = 0, cf. Sachs and Wu

[1261, p. 53
.

For the vacuum ray-optical structure JV = jV9 on (M, g) we know from

Sect. 5.3 that the symmetry algebra gAr coincides with the set of conformal

Killing vector fields of g. Hence, the vacuum ray-optical structure is stationary
in the sense of Definition 6.5.1 if and only if the Lorentzian manifold (M, g)
is conformally stationary.

In terms of local Hamiltonians, stationary ray-optical structures can be

characterized in the following way.

Proposition 6.5.1. Let JV be a stationary ray-optical structure on (M, g)
and fix a point u E JV. Then there is a local Hamiltonian H for M, defined on

a neighborhood of u, such that dH(fV-) = 0. Here W denotes the canonical

lift (5.24) of the time-like vector field W E gAr.

Proof. Since the vector field W is time-like, W(u) 54 0. Hence, we can choose

a codimension-one C' submanifold P of T*M through u that is transverse

to the flow of W. As the assumption W E 9,v implies that W(u) is tangent
to JV, it is then automatically guaranteed that P is transverse to JV at u.

This transversality property implies that Ar n P is a codimension-one C'

submanifold of P. If P is small enough, this guarantees the existence of a

C' function h: P ) R such that the differential dh has no zeros and

A(nP = I W E P I h(w) = 0 1. Then the conditions HIp = h and dH(17v) = 0

define a real valued function H on a neighborhood of u. By construction, H

is a local Hamiltonian for M. 1:1

In a natural chart, induced by a chart (x',..., x') on M with W = 49/(9x',
the equation dH(fV-) = 0 means that H is independent of the coordinate x'.

For a stationary ray-optical structure, the time-like vector field W E 9Ar
defines a normalized observer field V = e-f W, where

f = .1 In(- g(W, W)) . (6.72)2

By Proposition 6.2.2, f is a redshift potential for this observer field. This

observation is closely related to the fact that, by Proposition 5.3.3, the mo-

mentum O(W): T*M ) R is constant along each lifted ray. The existence of

this constant of motion is crucial for the dimensional reduction of stationary
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ray-optical structures. We are now going to discuss this reduction formalism

in detail.

The goal is to study, for a stationary ray-optical structure M on our

n-dimensional spacetime (M, g), the dynamics of rays in terms of their pro-

jections onto an (n - l)-dimensional space A In the first step we have to

construct the space A The obvious idea is to introduce M as a quotient

space of M, calling two points of M equivalent iff they are connected b an

integral curve of the time-like vector field W E iCA( and to hope that M is

a smooth Hausdorff manifold. This is, indeed, always true locally, i.e., if we

restrict to a sufficiently small neighborhood of an arbitrary point in M. Glob-

ally, however, the topological space M' may violate the Hausdorff axiom and

need not admit a smooth manifold structure such that the natural projection

Ir : M ) M becomes a submersion. E.g., for a time-like vector field W on

Minkowski space with one point removed the quotient space necessarily vio-

lates the Hausdorff property. Also, it is easy to verify that the quotient space

cannot be a smooth manifold if an integral curve of W is almost closed, com-

ing back into any neighborhood of some point infinitely often without being

periodic.
It is, thus, necessary, to introduce additional assumptions to make sure

that the quotient space M is a smooth Hausdorff manifold. To'put this

rigorously we introduce the following terminology, cf. Figure 6.3.

Definition 6.5.2. Let W be a time-like C' vector field on (M, g). A C'

function t: M --+ R is called a global timing function for W iff

(a) dt(W) = 1 and

(b) for any t, and t2 in R the fiow of W maps the hypersurface t = t,

diffeomorphically onto the hypersurface t = t2 -

It would be misleading to call t a "time function", rather than a "timing

function", since the hypersurfaces t = const. need not be space-like with

respect to the Lorentzian metric g.

If t is a global timing function for W, the above-mentioned quotient

space A can be identified with any of the hypersurfaces t = const.; this

identification makes A 4 into an (n - I)-dimensional C110 manifold such that

the natural projection ir: M ---> A 4 becomes a submersion. Then the map

(.7r, t): M -+ M x R is a global diffeomorphism.

The above-mentioned counter-examples demonstrate that, for an arbi-

trary time-like vector field W, a global timing function need not exist. It is

interesting to note the following result. If W is a time-like vector field on a

Lorentzian manifold that has no closed integral curves, then the Hausdorff

property of the quotient space M' guarantees the existence of a global timing

function for an appropriate reparametrization of W. The proof can be taken

over from Harris [56], Theorem 2.

If t: M --> R is a global timing function for W, a second function t': M

R is, again, a global timing function for W if and only if t' is of the form
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R

W

M t

7r

Fig. 6.3. A global timing function t for a time-like vector field W allows to write

spacetime M as a product of space and time R.

t' t + h o ir (6.73)

where h: M' --+ R is any C' function. In bundle theoretical language, two

different global timing functions for W define two different global trivializa,

tions for the fiber bundle ir: M --+ A 4. If t can be chosen in such a way that

the hypersurfaces t = const. are g-orthogonal to W, this additional condi-

tion fixes the timing function uniquely up to an additive constant. However,
since it is our goal to study stationary ray-optical structures, and not only
globally static ones, we have to deal with situations where such a choice is

not possible.
Now let us assume that we have a global timing function t: M - R for

W. Then the global difleomorphism (7r, t): M --4 M x R induces a splitting
of the cotangent, spaces T,*M  -- T* M E) T* R for all points q E M.

,r(q) t(q)
Projecting onto the first factor gives a reduction map

red: T*M ) T*M. (6.74)

If we change the timing function according to (6.73), the reduction map

undergoes the transformation

red(u) 1

) red(u) = red(u) + (dh)7r(q) (6.75)
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for u E T*M. In local coordinates, the reduction map is most easily expressed
q

if we choose coordinates (xl,. x1) on M with t = xI and W = ala'x". Then

we can use (xl.... I Xn-1) as coordinates on f4 and the reduction map takes

the form

(xl,...,Xn,pl '... , Pn) '

 (XII ... I
Xn-1, PI, - - -)Pn-1) - (6-76)

Please note that in such a coordinate system the momentum coordinate p"

coincides with the function O(W) which is a constant of motion according to

Proposition 5.3-3.

We are now ready to formulate a reduction theorem for stationary ray-

optical structures. Roughly speaking, this theorem says that a stationary

ray-optical structure)V on our n-dimensional spacetime (M, g) induces a one-

parameter family )V,,. of ray-optical structures on the (n - l)-dimensional
quotient space M', where the family parameter w,, E R is given by the value of

the conserved momentum, w,, = -O(W). For the construction of the reduced

ray-optical structure )V,,. it is necessaxy to choose a global timing function t

for the time-like vector field W E !gAr, i.e., in situations where such a t does

not exist the reduction does not work globally. Moreover, the theorem re-

quires two transversality assumptions. Even locally for the reduction process

to give a reduced ray-optical structure near a point U E JV it is necessary

that (i) the covector u is not a multiple of the differential dt at the point

q = -rt4 (u); and (ii) the fiber derivative FH(u) is not a multiple of W at the

point q = -r;A (u); where H is any local Hamiltonian for M. Note that FH(u)
is a multiple of W at those points where the ray velocity with respect to the

normalized observer field V = e-fW has a zero, see (6.7). Hence, the sec-

ond transversality assumption just excludes all points where the ray-optical

structure has a pathological behavior.

The precise formulation of the reduction theorem reads as follows.

Theorem 6.5.1. (Reduction theorem for stationary ray-optical

structures) Let A( be a stationary ray-optical structure on (M, g) and let

t: M --+ R be a global timing function for the time-like vector field W E !9,V -

As outlined above, this induces a global diffeomorphism (ir, t): M -- M x R

and a reduction map red: T*M T*M'. Now fix a value w,, E R such that

the set Q, u E Ar I O(W) -w,, I is non-empty. Assume that for all

points u E (i) the covector u is not a multiple of the differential dt at

q -r) (u); and (ii) the fiber derivative FH(u) is not a multiple of W at

q -r, 4 (u), where H is any local Hamiltonian for M. Then 9,,o = red(Q,,.)

is a ray-optical structure on X4'. A C' curve  : I --+ 9,. is a lifted ray (or
a lifted virtual ray, respectively) of )V,,. if and only if it can be written in the

form red o  where  : I -- Q,. C X is a lifted ray (or a lifted virtual

ray, respectively) of M.

Proof. Recall that W is the Hamiltonian vector field of the function O(W),
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d(O(W)) = Q(W, -) . (6.77)

This equation shows that the differential d(O(W)) has no zeros. Hence, the

set IC,,. = { u E T*M I (O(W)) (u) = -w,, I is a codimension-one submanifold

of T*M. On IC,,., the canonical two-form Q induces a two-form S?,,. with a

one-dimensional kernel. At each point of IC,,,, this kernel is spanned by W, as

can be read from (6.77). Let us call two points of IC,,. equivalent if they can be

connected by an integral curve of W. Then the quotient space )C,,. /_ carries a

Hausdorff manifold structure such that the natural projection /C,,. ) /C,,. /_
becomes a submersion. This follows from the fact that W admits a global
timing function. Moreover, the two-form S?,,. induces a symplectic: structure

on 1Q,. /-. It is worthwile to reconsider this construction in terms of a natural

chart induced by coordinates (xl,..., x') on M with t = x' and W = 9/,gxn.
Then )C,,,,, is given by the equation p,, = -w,,, i.e., r-,,. is parametrized by the

coordinates (xl.... I X", P1, - - - , p.- 1). Forming the quotient IC,,,, /_ comes up

to factoring out the coordinate x'. This shows that )C,,./-  an be identified,
as a symplectic manifold, with the cotangent bundle T*M, and that the

natural projection IC,,,, ) IC,,.I- can be identified with the restriction of

the reduction map (6.74) to )C,,,,.
Now we consider the set Q,. = X n For all points u FH(u)

is linearly independent of W,;,(.,,) by assumption. Thus, the characteristic

direction of 1Q,. (i.e., the direction spanned by W) and the characteristic

direction of Ar (i.e., the lifted ray direction) do not coincide. This implies that

Ar and IC,,. have a transverse intersection at all points u E Q,,.. Thus, Q,,.
is a closed codimension-one submanifold of IC,,., i.e., a manifold of dimension

(2n - 2). Since W E gAr, Q, is invariant under the flow of W. This implies
that the set = red(Q,,,,) is a closed submanifold of T*M c--

of dimension (2n - 3). Since we assume that u E Q,,,, is never a multiple
of dt,;,(,,), 9,,. does not meet the zero section in T*M; since we assume

that for u E Q,,. the fiber derivative FH(u) is never a multiple of W (u),
A

wo
is everywhere transverse to the fibers of T*M. This proves that Jv, is,

indeed, a ray-optical structure on A To prove the rest of the proposition,
we observe that Q,,. is foliated into the two-surfaces spanned by lifted rays

and by integral curves of W. If we denote the pull-back of the canonical

two-form 0 to Q,,. by these two-surfaces can be characterized as the

integral manifolds of the kernel of Hence, red maps any such two-surface

onto the image of a lifted ray of
,o.

This proves that for each lifted ray

there is a one-parameter family of lifted rays  : I of

X such that  = red o  . Since the map red is fiber preserving, this result

remains true if "lifted ray" is replaced with "lifted virtual ray". El

Please note that at a point u E Q,,, n Tq*M the frequency with respect

e-f(q)to the normalized observer field V = e-fW is equal to
, W". If Af is

reversible one can restrict to values w,, > 0 without loss of generality.
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Locally around a point u E Ar the reduction can be carried through in

the following way. It is convenient to introduce coordinates (xl,...,xn) on

M such that t = x' and W = O/Ox'. By Proposition 6.5.1, we can choose a

local Hamiltonian H for JV around u which is independent of x1. It is easy to

verify that a local Hamiltonian ft for the reduced ray-optical structure

is given simply by setting pn equal to -w,,, i.e.,

ft (XI, . . . ,
x-1, pl, . . . , pn- 1) = H(xl, . . . ,

xn- 1, P1, pu- 1, -w,,) . (6.78)

It is important to realize that the reduced ray-optical structure 9,,. de-

pends on the choice of the global timing function for W in the following way.

If, in the situation of Theorem 6.5-1, the global timing function is changed

according to (6.73), the reduced ray-optical structure changes according to

9,,,, + A (6.79)

is again a ray-optical structure on M provided that the transversality

condition (i) of Theorem 6.5.1 is satisfied for the new global timing function

as well as for the old one. The proof of (6.79) follows immediately from the

transformation behavior (6.75) of the reduction map.

In this situation, Theorem 6.5.1 gives a natural one-to-one relation be-

tween lifted rays of 9,,,, and lifted rays of./(['
.
This relation is defined by

associating a lifted ray  of JV,,. with a lifted ray of iff they are

representable in the form red o  and red' o with the same lifted

ray of M. By (6.75),  and  ' are then related by

 '(s) =  (s) + A I
A

(6.80)

for s E I. There is an analoguous one-to-one relation for lifted virtual rays.

In terms of a natural chart on T*A, (6-80) takes the form

x1p (8) xP(s) (6-81)

PIP(s) = PP(s) +
A

(xj(s),...,X._j (s)) (6-82)
 _XP

where p = 1, n - 1. This observation implies that the rays of 9,,,, and

coincide although the lifted rays do not. Similarly, the virtual rays of

and coincide although the lifted virtual rays do not. From (6.80)
W"

or (6.82) we can also read the transformation behavior of wave surfaces.

The function  : M ) R is a classical solution of the eikonal equation of

Xr,,o if and only if the function  + h is a classical solution of the eikonal

equation of 9'o. Clearly, both solutions are associated with the same family

of rays. There is a far-reaching formal analogy between this situation and the

dynamics of charged particles moving in a magnetostatic field. The change

of the global timing function corresponds to a gauge transformation of the
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magnetostatic potential. In both cases, the canonical momentum coordinates

undergo a transformation of the form (6.82). In view of this analogy one

might say that the rays of 91,1,, are "gauge invariant" whereas the wave

surfaces are not. This "gauge freedom" can be removed if our stationary ray-

optical structure is globally static. Then we can "fix the gauge" by choosing
the hypersurfaces t = const. g-orthogonal to the integral curves of W. If,
however, our stationary ray-optical structure is not globally static, then there

is no distinguished choice for the global timing function and we have to live

with the "gauge freedom".

Having clarified the dependence of the reduced ray-optical structure

on the choice of the global timing function, we are now going to investi-

gate its dependence on the parameter w,, which fixes the frequency of the

rays. If the assumptions of Theorem 6.5.1 are satisfied for two real numbers

w,, and w', the reduced ray-optical structures and are in general0

completely different. If, however, the stationary ray-optical structure M is

dilation-invariant in the sense of Definition 5.4.1 (i.e., if the medium under

consideration is non-dispersive), then JV,,, and JV,,, are related by the fol-
o

lowing proposition.

Proposition 6.5.2. Assume that all the assumptions of Theorem 6.5.1 are

satisfied and that, in addition, Ar is dilation-invariant. Then the assumptions

of Theorem 6.5.1 are still satisfied if w,, is replaced with W
0
= c W,, for any

real number c: > 0, and the reduced ray-optical structures are related by

R. ,,
= C X ,. - (6.83)

In particular, the rays of coincide with the rays of 9,,.. If Ar is not only
dilation-invariant but also reversible, (6.83) carries over to the case c < 0.

Proof. Recall that M is dilation-invariant if and only. if M = c Ar for all real

numbers c, > 0. As we have seen in Sect. 5.4, dilation-invariance implies that,
for any u E Ar and any local Hamiltonian H of Ar which is defined around u,

the fiber derivative satisfies FH(c u) = cFH(u) for all real numbers c > 0. IfX

is not only dilation-invariant but also reversibel, these properties remain valid

for c < 0. On the basis of these observations the proof of Proposition 6.5.2 is

an easy exercise. 13

Proposition 6.5.2 is, of course, in perfect agreement with the basic idea

that in a non-dispersive medium the spatial path of a light ray is independent
of its frequency.

If we have a reduced ray-optical structure constructed by the method

of Theorem 6.5.1 from a stationary ray-optical structure, we can integrate
each lifted virtual ray of 9.,, over the canonical one-form  of T*M'. Quite

generally, the integral over the canonical one-form is known as the action

functional and will play a central role in our discussion of variational prin-

ciples in Chap. 7 below. In the case at hand, it is helpful to introduce the

following definition.
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Definition 6.5.3. Consider the situation of Theorem 6.5.1 with W,, 54 0.

For a lifted virtual ray [81) 821 JQ ,, of the reduced ray-optical structure

f f82Wo (' (s)) ds (6.84)
., I

is called the optical path length of  . Here 0 denotes the canonical one-form

on T*A 4.

If 9,,,, is everywhere transverse to the Euler vector field k on T*A , the

integral (6.84) is a strictly monotonous function of the upper bound S2. In this

case the optical path length gives us a distinguished parametrization along
each lifted virtual ray of Ar,,,,. We have already seen that such a distinguished

parametrization exists if and only if the Euler vector field is transverse to Ar,

please recall Proposition 5.4.7 and the subsequent discussion.

It is important to realize that the optical path length is "gauge dependent"

in the following sense. Under a change of the global timing function the

reduced ray-optical structure changes into according to (6.79).

Thereby each lifted virtual ray [81, S21 9,,,, of 9,,,, changes into a

lifted virtual ray  f
: [SI) S21 R',, of according to (6.80). If we

, ,W W

compare the optical path length of  ' with the optical path length of  we

find that they do not coincide but are related by

-T ( ) + (6.85)

A

where A = -r*. o -r*. o

M M

The following proposition relates the optical path length to the "travel

time", measured in terms of the global timing function t. This result is of

particular relevance in view of Fermat's principle to be discussed in Chap. 7

below.

Proposition 6.5.3. Let, in the situation of Theorem 6.5.1, 6: [S1 7 821 Ar

be a lifted virtual ray of A( along which the conserved momentum O(W) takes

the value -w,, =A 0. Then the optical path length of  = red o  is given by

S2

X(S2)) - t (A(S1)) - (6.86)( (s)) ds + t (/

If N is dilation-invariant this equation simplifies to

-T ( ) == t (A(S2)) - t (A(81)) (6.87)

Proof. Since red o  and O(W) takes the constant value -w,, along  ,

O (,,) ( (s)) = ( (s)) - wo dt,\(,) ( (s)) (6.88)
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for 8 E [81) S21. To verify this equation we can use a natural chart induced by
coordinates (Xl,...,xn) on M with x' = t and alax' = W; then (6.88) is

just the trivial identity p,, dx' = pp dxP + pn dxn. Integrating (6.88) from si

to S2 yields (6.86). If JV is dilation-invariant, the integral vanishes owing to

Proposition 5.4.7. 13

If the reduced ray-optical structure 9,,. is strongly hyperregular and thus

orientable, we know from Proposition 5.2.4 that there is a one-to-one relation

between positively oriented virtual rays and positively oriented lifted virtual

rays. In that case the optical path length can be viewed as a functional on

(positively oriented) virtual rays rather than on lifted virtual rays. Again, this

observation is crucial in view of Fermat's principle. As a matter of fact, for

any stationary ray-optical structure with relevance to physics the reduced ray-

optical structure is indeed strongly hyperregular or at least strongly regular.
In the latter case the above-mentioned one-to-one correspondence holds true

at least locally. The following proposition gives a useful criterion.

Proposition 6.5.4. Assume that all the assumptions of Theorem 6.5.1 are

satisfied and fix a point u E Ar with (O(W)) (u) = -w,,. Then the reduced

ray-optical structure 9,,. is strongly regular at the point fi = red(u) if and

only if the condition

(Hab) (Ha) (Wa)

det (H6) 0 0 0 (6.89)

(Wb) 0 0

holds at u in any natural chart. Here we use the same matrix notation as in

(5.15), with H denoting any local Hamiltonian for Ar and Wa denoting the

components of the vector field W.

Proof. It is easy to check that (6.89) is independent of which natural chart

and which local Hamiltonian has been chosen. We choose a natural chart

induced by coordinates (xl, . . . , x") on M with t = Xn and W = o9/c9x`, and

we choose a local Hamiltonian H that is independent of x1. This is possible

owing to Proposition 6.5.1. Then equation (6.78) gives us a local Hamiltonian

for JV,,. around & As in the coordinates chosen Wa = Jna, condition (6.89)
holds at u if and only if the condition

det
Olpa) (ftp)

0 (6.90)( (fi') 0

holds at fi, where p is an index numbering rows and o, is an index numbering

columns, both running from I to n - 1. By Definition 5.2.2, (6.90) holds at 'a

if and only if 9,. is strongly regular at that point. 1-:1

In many cases of interest condition (6.89) can be checked quickly with the

help of the following result from linear algebra.
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Proposition 6.5.5. If the matrix (Hab) is invertible, HabHb,: = Ja, (6.89)
is equivalent to

Hab Ha Hb HcdHcWd)
.det ( Hef He Wf Hgh Wg Whj
 0. (6.91)

Proof. We can assume that (Ha) and (Wa) are linearly independent since

otherwise (6.89) and (6.91) are both wrong. With this assumption, (6.89)
is satisfied if and only if the image of the (n - 2)-dimensional vector space

I (Zb) (=- R" I Ha Za = Wa Za = 0 } under (Hab) is transverse to the 2-

dimensional space spanned by (Ha) and (Wa). This is the case if and only

if (Hab) is non-degenerate on the 2-dimensional space spanned by (Ha) and

(Wa), i.e., if and only if (6.91) holds true. 0

6.6 Stationary ray optics in vacuum and in simple media

In the preceding section we have established the general features of the re-

duction formalism for stationary ray-optical structures. To illustrate these

results by way of example, we shall now carry through the reduction in full

detail for stationary vacuum ray-optical structures. To that end we have to

assume that we have a g-time-like vector field W E 9Ar where M = Afg de-

notes the vacuum ray-optical structure on (M, g). According to our results of

Sect. 5.3, the condition W E 9Ar means that W is a conformal Killing vector

field of the metric g, i.e., that the Lie derivative Lwg is a multiple of g. This

implies that W is a Killing vector field of the rescaled metric e-2f91

LW (e-2f g) = 0 (6.92)

where f In( - g(W, W)). Hence, the one-form
2

_e-2f g(w, (6.93)

satisfies

O(W) =1 and LwO=O. (6.94)

Now let us assume that we have a global timing function t: M R for W.

This gives us a global diffeomorphism (7r, t): M ) M' x R. The fact that

W is a Killing vector field of the rescaled metric e
-2f

g induces a particular

geometrical structure on M'. To work this out, we use the one-form (6.93)
and the differential dt of the global timing function to write the spacetime

metric in the form

g = e
2f e-2f g + 0 0 0 _ (0 - dt + dt) 0 (0 - dt + dt)) (6.95)
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which is a trivial identity. Clearly, the symmetric second rank tensor field

e-2f g+000 satisfies (e-2f g+000)(W, -) = 0 and Lw(e-2f 9+000) = 01
and it is positive definite on the orthocomplement of W. Hence, it must be

the pull-back of a (positive definite) Riemannian metric  on

e-2f g + 0 0 0 = 7r*. (6.96)

Similarly, the one-form dt satisfies dt) (W) = 0 and Lw dt) = 0.
A

Hence, it must be the pull-back of a one-form 0 on M,

0 - dt = -7r* . (6.97)

With (6.96) and (6.97) inserted into (6.95), the metric g takes the form

g = e2f (7r* - (-7r* + dt) 0 (-7r* + dt)) . (6.98)

The conformal factor e
2f has no influence on the vacuum light rays. Thus,

(6.98) suggests that the metric and the one-form are the relevant geo-

metrical objects that determine the reduced ray-optical structures 9".. This

is indeed the case as we shall see below. But first we want to check if  and

depend on the choice of the global timing function t. If we change t ac-

cording to (6.73), the metric is obviously unaffected whereas the one-form

transforms like a gauge potential,

(6.99)

Thus, the two-form

4 = d (6.100)

is independent of which global timing function has been chosen. The geomet-
rical meaning of c is that it measures the rotation (=twist) of the integral
curves of the time-like vector field W. Vanishing of ca characterizes the lo-

cally static case, i.e., the equation c j = 0 is equivalent to W being locally

hypersurface-orthogonal. If M' is simply connected, the equation c = 0 is

even equivalent to W being globally hypersurface-orthogonal. Let us quickly

prove the second statement which implies, of course, the first one. On a sim-

ply connected manifold the equation d = 0 guarantees the existence of a

function h such that  = A. (We have used this well-known fact already in

the proof of Proposition 5.5.2.) Thus, a gauge transformation (6.99) with this

function h leads to 0. Together with (6.97) this shows that, for M simply
connected, the equation c 0 is equivalent to the existence of a global tim-

ing function t' such that 0 dt' = 0 and thus, by (6.93), g(W, - ) = -e
2f dt'.

Clearly, the latter equation characterizes the case that W is orthogonal to

the hypersurfaces t' = const., i.e., it characterizes the globally static case.

As a preparation for the reduction, we now use the representation (6.98)
of the spacetime metric g to write the dispersion relation for vacuum light
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rays in terms of the spatial metric and the spatial one-form 0. If we use

local coordinates (xl,..., x') on M with x1 t and i9lax' = W, (6.98) takes

the form

gab dXa g dXb (6.101)

e2f ( p.
dxP 0 dx' - ( , dx' + dt) 0 ( p dxP + dt)).

Here and in the following greek indices are running from 1 to n- 1
- p, and

depend on (xl, . . . ,
xn- 1) whereas f depends on (xl, . . . , xr). With the covari-

ant metric components gab given by (6.101) it is an easy exercise to calculate

the contravariant metric components gab .
This puts the dispersion relation

9ab Pa Pb = 0, by which the vacuum ray-optical structure is determined, into

the form

_

2
=0. (6.102)VC (Pp - Pn  p) (Pa - Pn  a) Pn

Here we have introduced the contravariant components P' of the metric g^
which are defined by ,,p P`r = ja

/V

We are now ready to construct the reduced ray-optical structures

according to Theorem 6.5.1. Let us first check if all the assumptions of this

theorem are satisfied in the case at hand. The set Q,,,, is non-empty for all real

numbers w,, :A 0. The transversality condition (i) of Theorem 6.5.1 is satisfied

if and only if the one-form dt is nowhere g-light-like whereas the transversality

condition (ii) is always satisfied. Thus, we have to assume that the global

timing function has been chosen in such a way that the hypersurfaces t =

const. are either everywhere space-like or everywhere time-like with respect

to g. Then Theorem 6.5.1 gives us a reduced ray-optical structure 9,,,, for all

real numbers w,, 0 0. Please note that the left-hand side of (6.102) gives us a

Hamiltonian H for JV that is independent of the coordinate Xn
.
As in (6.78)

we get a Hamiltonian ft for the reduced ray-optical structure 9". simply by

setting p, equal to -w,,

ft(X1,..., Xn-1,P1,..., pn- 1) (6.103)

ta (PI, 2),
2 ( + wo jz) (PC + WO  a) - WO

where the factor 2wo was introduced for later convenience. Thus, the disper-

sion relation of the reduced ray-optical structure reads

ga (P,4 + U)O t) (PC + WO &) _ W2 = 0
. (6.104)

0

With the Hamiltonian (6.103), Hamilton's equations take the form

,_ 0- =1 ap P
+ WO 4) 1 (6.105)

WO
(P
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I aPA
+

2 w,, i9xO' (PP + W'  P) (P
(6.106)

VA
a0p
axo- (PA + WO  1.1) -

Together with (6.104), the equations (6.105) and (6.106) determine the lifted

rays of 9,,. in the special parametrization adapted to H. (6.105) can be

solved for the momentum coordinates; upon inserting the result into (6.104)
and (6.106), respectively, we find

,,, = I
, (6.107)

, A + ;.r.. ( 04
*

):t, .AP
OX0, 09XP

(6.108)

Here we have introduced the Christoffel symbols

1
AP (,OP. +

ap,\
-  g:_-_,%) (6.109)

2 9XA jqXr. '9XP

of the metric . (6.107) and (6.108) determine the rays of 9". in the paramet-
rization adapted to ft. Rom (6.107) we read that this is the parametrization

by -arc length. In the locally static case, 4 = d = 0, the right-hand side of

(6.108) vanishes and the rays are exactly the -geodesics. If ( does not vanish,
the rays deviate from the -geodesics in response to the "force ter&' on the

right-hand side of (6.108). This force term has the same formal structure

as the Lorentz force exerted on a charged particle by a magnetostatic field.

In this analogy, the two-form c. corresponds to the magnetic field strength
and the one-form  corresponds to the magnetic potential. This is, of course,

only a formal analogy. In the situation at hand c has nothing to do with a

real magnetic field. It is a purely kinematical quantity measuring the rotation

( = twist) of the integral curves of W. Physically, the right-hand side of (6.108)
can be viewed as a CoTiolis force.

Since  enters into (6.108) only in terms of 4 = d , the rays of JV,,.
are gauge invariant although the lifted rays are not. We know already from

our discussion following Theorem 6.5.1 that this is a general feature of the

reduction formalism. Moreover, as neither (6.107) nor (6.108) involves the

parameter w,,, all the reduced ray-optical structures for WO E R \ f01,

give the same rays. This observation exemplifies Proposition 6.5.2 since the

vacuum ray-optical structure is dilation-invariant and reversible.

We shall now derive an expression for the optical path length, which was

introduced in Definition 6.5.3, in terms of the Riemannian metric and the

one-form  . (6.104) and (6-105) 4etermine the lifted virtual rays of 9". in

the parametrization adapted to H. These equations imply

P'-'+, = W. (V/9_^P11,1--tP1A - 4 X-P) - (6.110)
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We can now free ourselves from the particular parametrization. Clearly, an

orientation-preserving reparametrization leaves (6.110) unchanged whereas

an orientation-reversing reparametrization requires replacing the positive

square-root with the negative square-root. Since 0 = p, dx'7, (6.110) gives us

the integrand of the optical path length (6.84). If we switch back to invariant

notation, the optical path length of a lifted virtual ray  : [Sl) 821 )9"1"
takes the form

JS2 (s) ds (6.111)

where  : [S 11 S21 A 4 is the projection of to As A is light-like, we

can read from (6.98) that

dt(A) . (6.112)

Comparison with (6-93) and (6.97) shows that the positive square-root in

(6.112) corresponds to the case that the parametrization of '\ is future-

oriented with respect to W, i.e., g(W,  ) < 0. Inserting (6.112) into (6.111)
demonstrates that, in the case at hand, the optical path length of  is equal

to the travel time with respect to the global timing function used for the re-

duction. The same result follows from Proposition 6.5.3, using the fact that

the vacuum ray-optical structure is dilation-invariant.

(6.111) clearly shows that, up to an orientation-depending sign ambiguity,

the optical path length of  is determined by its projection k We have already

mentioned that this is true whenever the reduced ray-optical structure

is strongly hyperregular. In the case at hand 9,,. has the additional property

that every COI curve in M is a virtual ray. For this reason the optical pa h
length can be viewed as a functional on the set of all CO, curves X in M,

given by the right-hand side of (6.111).
(6.111) again exemplifies the gauge dependence of the optical path length.

In the globally static case we can choose the global timing function in such
A

a way that 0 vanishes. In this distinguished gauge the optical path length
coincides with the -arc length. In the stationary but non-static case, however,

the gauge freedom in the definition of the optical path length cannot be

removed.

We have now established all the relevant equations of the reduction for-

malism for stationary vacuum ray-optical structures. Examples will be given

in Chap. 8 below, where the metric and the gauge-dependent one-form

are calculated for several (conformally) stationary spacetimes (M, g) with

relevance to physics. For examples of this kind we also refer to Abramowicz,

Carter and Lasota [3] and to Perlick [109].
For light propagation in matter, the reduction formalism has, in general,

rather different features in comparison to the vacuum case. In particular,

the reduced ray-optical structure R,,,, is, in general, not determined by a
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Riemannian metric and by a one-form which is unique up to gauge transfor-

mations. However, there is a special class of (non-dispersive) media to which

our vacuum results immediately carry over, viz., media characterized by a

Lorentzian "optical metric". So let us consider a ray-optical structure Ar on

(M, g) which is of the kind given in Example 5. 1. 1, i.e., let us assume that

Ar C T*M is the null cone bundle of a Lorentzian metric N. If g,, is confor-

mally equivalent to 9, then Ar is the vacuum ray-optical structure on (M, g),
otherwise Ar gives light propagation in a medium. We assume that JV is sta-

tionary, i.e., we assume that there is a vector field W which is time-like with

respect to g and a conformal Killing field with respect to g,,. If W is time-like

with respect to g, as well, and if we can find a global timing function for

W, then we can carry through the reduction procedure in analogy to the

vacuum case. Now it is, of course, the optical metric g,, that is decomposed
in the form (6.98). Hence, vanishing of the induced one-form implies that

W is orthogonal to the hypersurfaces t = const. with respect to the opti-
cal metric g,, and does not characterize the globally static case. Similarly,
it is now the metric g,, with respect to which the hypersurfaces t = const.

have to be non-light-like in order to guarantee that the assumptions of Theo-

rem 6.5.1 are satisfied for all w,, 0 0. In this situation the rays of the reduced

ray-optical structure are, again, determined by equations of the form (6.107)
and (6.108), and the optical path length is, again, representable in the form

(6.111). Explicit examples of this kind will be given in Chap. 8 below.

One of the most interesting aspects of the reduction formalism for station-

ary ray-optical structures is that it provides a link between our general rela-

tivistic Lorentzian geometry setting of ray optics and the ordinary Euclidean

geometry setting of elementary textbook ray optics. Roughly Speaking, ray

optics in media, as it is treated in elementary optics textbooks, can be viewed

as the result of our reduction process applied to an appropriate ray-optical
structure on Minkowski space. If (M, g) is n-dimensional Minkowski space,

we can use pseudo-Cartesian coordinates (xl,. Xn- 1, Xn = t) to identify M

with Rn and to put g into the form

g = 6pcr dxP 0 dxo' - dt (9 dt
. (6.113)

Here, as before, the summation convention is used for greek indices running

from 1 to n - 1. This induces a natural chart (xl.... I
X
n

P1.... 7 p.) globally

on T*M. Up to a minus sign, the momentum coordinate p,, = O(W) gives

the frequency with respect to the inertial system V = W = 9/,9t for any ray-

optical structure Ar on M. Now let us consider'a ray-optical structure JV on

M such that all the matter functions that enter into the dispersion relation

are independent of the time coordinate x' = t. This implies that W = 49/&t E

gAr, i.e., it implies that JV is stationary. Since g(W, - ) = -dt, Ar is then even

globally static and the time coordinate x' = t gives a distinguished global

timing function. For all frequency values w,, E R for which the assumptions

of Theorem 6.5.1 are satisfied, the reduction formalism gives us a reduced
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ray-optical structure 9,,,. on Euclidean space A _2` R". The physically

interesting case is, of course, n = 4. Any sort of medium treated in elementary

optics textbooks can be modeled in terms of such a one-parameter family of

ray-optical structures on M' c---- R3.

Here is a special example of this construction. Let us assume that the

ray-optical structure JV on Minkowski space is given by the equation

6pa ppp, - n(xl,..., Xn-1, -P.)2 2
= 0 (6.114)N

where n: R'- 1
x R R+ is a C' function. In the terminology of Sect. 6.3,

A( is isotropic with respect to the inertial system V = W = allot. The

function n gives the index of refraction which is assumed to be independent
of the time coordinate t = x" whereas it may depend on the frequency -p,'.

In this situation the assumptions of Theorem 6.5.1 are satisfied for all W,, : 0.

From (6.114) we read that the reduced ray-optical structure 9,". is governed

by the global Hamiltonian

ft(xl) ... 7
X"_1IP17 ... I Pn- 1)

I (
P, PP P, W2

(6.115)

2 n(xl, .
Xn- 1, W,,) 2

0

This implies that the rays of 9.,, are the geodesics of the conformally flat

Riemannian metric

 p, n(. , U)0)2 jPO' (6.116)

on A 4 which depends, of course, on the frequency value wo. For a lifted

virtual ray  of Xf,,o, the optical path length _T( ) equals the  -arclength

of its projection  to M, where denotes the Riemannian metric given by

(6.116). We have thus rediscovered the standard textbook formulae for ray

optics in dispersive isotropic media.



7. Variational principles for rays

In this chapter we want to characterize the rays of a ray optical structure

in terms of variational principles. In particular, we want to investigate for

what kind of ray optical structures some version of Fermat's principle holds

true. This question is of interest not only from an abstract theoretical point
of view but also in view of applications.

Most elementary optics textbooks, such as, e.g., Born and Wolf [16], give a

formulation of Fermat's principle for non-dispersive and isotropic media only.

However, generalizations to more complicated media are known, see, e.g.,

Newcomb [1001. If we allow for dispersive and anisotropic media, Fermat's

principle in ordinary optics can be phrased in the following way.

Fix two points in space and a frequency value w,,. Consider all pos-

sibilities to go, along different spatial paths, from one point to the

other at the velocity of light as it is determined, for the frequency W,,,

by the medium considered. Among all these "trial curves", the actual

light rays are then the local extrema and saddle-points of a certain

functional which is called the optical path length. If the medium is

non-dispersive it is not necessary to specify the frequency and the

optical path length can be reinterpreted as travel time.

Whenever a variational principle can be viewed as a mathematical re-

formulation of this statement it is legitimate to consider it as a version of

Fermat's principle. In the following we establish several variational princi-

ples for the rays of a ray-optical structure, and we discuss their relation to

Fermat's principle.

7.1 The principle of stationary action: The general case

In classical mechanics it is usual to define the action functional on C1 curves

[SI 7 S21 --+ T*M by integration over the canonical one-form 0, i.e.,

S2

A( ) 0 = OC(S) ( (s)) ds (7.1)

ute
V. Perlick: LNPm 61, pp. 149 - 181, 2000
© Springer-Verlag Berlin Heidelberg 2000
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Actually, the action functional can be defined on curves of a more general

differentiability class; for the time being, however, we stick to the C' case.

From standard textbooks on classical mechanics we know that the solu-

tions of Hamilton's equations satisfy a principle of stationary action. There-

fore, it should not come as a surprise that the lifted rays of an arbitrary ray-

optical structure on M satisfy a principle of stationary action as well. In com-

parison to the situation of classical mechanics there are three modifications.

First, for an arbitrary ray-optical structure the existence of a Hamiltonian

is guaranteed only locally. Second, lifted rays have to satisfy the dispersion

relation, i.e., in mechanical terminology they are restricted to the "energy
surface" H = 0. Third, lifted rays can be reparametrized arbitrarily which is

reflected by the arbitrary stretching factor k in the ray equations (5.9). Mim-

icking standard techniques of classical mechanics, but taking care of these

three modifications, we find the following principle of stationary action for

lifted rays of an arbitrary ray-optical structure, cf. Figure 7.1.

Theorem 7.1.1. (Principle of stationary action for lifted rays) Let

be an arbitrary ray-optical structure on M and fix a C' immersion

[SI 1 -921 ) JV. As allowed variations of  consider all C' maps

77: 1 - -607 EO[ X [S17 S21 ) M withq(O, -) =  for which the tangent vectors

to the curves q ( -

,
s 1) and q ( -

 82) are annihilated by the canonical one-form

0. Then the following holds true.

(a) If  is a lifted ray of JV, then  is a stationary point of A,

d
TEA (,q 0 (7.2)

for all allowed variations q of  .

(b) Conversely, if (7-2) is true at least for all allowed variations q of  with

fixed endpoints in Ar, i. e., with sj) and 77(', S2) constant, then  is

a lifted ray.

Proof. Let q be an allowed variation of  and denote the pertaining varia-

tional vector field by Y: [Sl) S21 ) TA(, i.e.,

Y(s) =,q(., SY(O) - (7.3)

Then the variational derivative of the action can be calculated in the following

way, using standard derivative rules.

d A 152 ((dO) ( ,) (Y(s),  (s)) + -4- (0 (,) (Y(s))) ds
Te (77 LO ds

S

(Y (s),  (s)) ds + 0 (-92)(Y(82)) - 0 (sj)(Y(Sl))

J52 ( (s), Y(s)) ds . (7.4)
S1
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Fig. 7.1. An allowed variation, in the sense of Theorem 7.1.1, must be completely
contained in Ar.

In the last step we have used the fact that Y(sj) and Y(82) are annihilated

by 0 because 71 is an allowed variation. Since our allowed variations stay

within X, Y must be everywhere tangent to Ar. Thus, we can read from

(7.1) that part (a) of the proposition follows directly from Definition 5.1.2.

To prove part (b) we assume that the last integral in (7.1) vanishes for all

C' vector fields Y along  that are everywhere tangent to Ar and vanish at

the endpoints. Hence the fundamental lemma of variational calculus implies

that  must be a lifted ray according to Definition 5.1.2.

Alternative proof. For those readers who feel more comfortable with tradi-

tional index notation we give an alternative prooL We assume that  can be

covered by the domain of a Hamiltonian and of a natural chart, and we write

5 for the derivative with respect to , at e = 0, as in (5.46), (5.47) and (5.48).
Then (7.1) takes the form

82

JA = 6 (s).,ka(s)dsP"

2 82

JPa(S) :ta(,) ds + Pa (S) jta (s) ds

132 6pa (S)  ba (s) ds + (7.5)

Pa (S2) 6xa (82) - Pa (81) 5xa(sl) - f52 Pa(s) jxa (s) ds
.q491

'92

ia (s) ds - 182 ba (S) jxa (s) dsbPa(s)
1 49

z
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Since all allowed variations are confined to Ar, they have to preserve the

constraint equation H(x(s),p(s)) = 0, i.e.,

aH

(X(S), 19(s)) 6x,,(s) +
'H

(x(s),P(s)) Jp"(S) = 0. (7.6)
igXa ON

To prove part (a) we recall that lifted rays satisfy (5.11) and (5.12). Upon
inserting these equations into (7.1) the desired result follows immediately
with (7.6). To prove part (b) we insert (7.6) into (7.1) with the help of a

Lagrange multiplier k(s). This results in

JA = 1,92 Jpa(S) (&a(,) - k(s) '9H (x(s), p(s)) ds -

ap.

92 (7.7)
jxa(s) (P,, (s) + k(s) ax" (x(s), p(s))) ds

By assumption, the right hand side of (7.7) is equal to zero for all smooth

Jp,, and bxa that vanish at s, and S2. (The Lagrange multiplier k(s) allows

to forget about (7.6).) Hence, the fundamental lemma of variational calculus

implies that the ray equations (5.11) and (5.12) have to be satisfied. El

Theorem 7.1.1 implies, in particular, that  is a lifted ray if and only if
d A(77(e:, -)) 1,,=o = 0 for all allowed variations for which the curves n(-, si)Te
and 77(', S2) are vertical, i.e., for variations that keep the endpoints fixed in

M.

As A(x) is obviously invariant under orientation-preserving reparametriza-
tions of  , we could equally well allow for variations that change the parameter
interval [S1, S21. However, such a generalization of Theorem 7.1.1 will not be

needed in the following.
We emphasize that it is not justified to use the name "principle of minimal

action", rather than "principle of stationary action ', for Theorem 7.1.1. In

general, a lifted ray can be a local minimum, a local maximum, or a saddle-

point of the action functional. This is true even if we restrict to arbitrarily
short rays.

The advantage of Theorem 7.1.1 is in the fact that it holds for arbitrary

ray-optical structures. In particular, no regularity assumption is needed. Its

disadvantage is in the fact that a very big set of allowed variations is used.

Apart from the boundary conditions, all curves in Ar, i.e., all curves for

which the momenta satisfy the dispersion relation, are to be considered as

"trial curves" q(E, -). This includes curves with arbitrary velocities and not

only motions at the velocity of light. For this reason Theorem 7.1.1 cannot

be viewed as a version of Fermat's principle as it was stated in the beginning
of this chapter. If we restrict the set of trial curves to motions at the velocity
of light, in general we will have not enough allowed variations to prove an

analogue of part (b) of Theorem 7.1.1. (There is, of course, no problem with
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part (a).) In Sect. 7.2 we shall see that there are still enough allowed variations

if Ar is strongly (hyper-)regular.
Theorem 7.1.1 has several interesting consequences. To give just one ex-

ample, we now show that part (a) of Theorem 7.1.1 leads to the familiar

Huyghens construction of (lifted) wave surfaces. Here we have to recall the

notions of generalized solutions of the eikonal equation and of lifted wave

surfaces from Sect. 5.5.

Theorem 7.1.2. (Huyghens construction) Let Ar be a ray-optical struc-

ture onM which is everywhere transverse to the flow of the Euler vector field.
Let 45 be the flow of the distinguished characteristic vector fleld X on Ar which

is- determined by the equation OAr(X) = 1. Fix a generalized solution L of the

eikonal equation ofM and a lifted wave surface S of L. Let s E R be such

that the set -P, (9) is non-empty and, thus, again a lifted wave surface of C.

Then 4i,(S) can be constructed as the envelope of the surfaces  P,(Arq) where

q ranges over all points in M that can be represented in the fo q = -r (u)nn JL
with some u E

Proof. Choose any u E S and let  : I Ar denote the maximal integral

curve of the distinguished characteristic vector field X on./V with  (O) = u.

We have to prove that at the point  (s) the (n - I)-dimensional surfaces

(P,(S) and  P,(Arq) are tangent to each other where q = -r 4(u). To that end

we consider all C1 maps 77: ] -eo 7 eo [ x [0, s] ) Ar with 77(0, - ) =  such that

the varied curves q(e, - ) are lifted rays with q(e, 0) E Arq and 77(,,, s) E lps (S)
for all 6 E E0, -0 [. By Theorem 7. 1.1 (a), any such 77 satisfies the condition

d A(77(e, 1,0. This implies that for any such 77 the vector 71( s)* (0) is
76-

tangent to  P, (A(,). Since all elements of T (,) (C (S)) can be represented in

this form, 4i,,(S) and  P,(AQ must be tangent to each other at  (s). 11

M M

a)Example 5.1.2 b)Example 5.1.5

Fig. 7.2. Theorem 7.1.2 leads to the familiar Huyghens construction in M accord-

ing to which wave surfaces are the envelopes of "elementary waves". Please note

that transversality of the ray-optical structure to the flow of the Euler vector field

is necessary. This is the case, e.g., for Example 5.1.2, where the "elementaxy waves"

are hyperboloids, and for Example 5.1.5, where the "elementary waves" axe spheres.

Upon projection to M, Theorem 7.1.2 gives the familiar Huyghens con-

struction according to which the wave surfaces (projections of 4i,(S)) are
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the envelopes of "elementary waves" (projections of 4i,(A(q)), see Figure 7.2.

Clearly, the projections to M of (P,(S) and  P,(Arq) are smooth submanifolds

only if  %(S)) and  %(Afq) are transverse to the fibers.

It is to be emphasized that Theorem 7.1.2 has to presuppose a ray-optical
structure Ar that is transverse to the flow of the Euler vector field since

otherwise a characteristic vector field X with 0,\r(X) = 1 does not exist. In

particular, Theorem 7.1.2 does not apply to ray-optical structures that give

light propagation in a non-dispersive medium on a spacetime. For this reason

Theorem 7.1.2 has more relevance for ray-optical structures on space rather

than on spacetime.

7.2 The principle of stationary action:

The strongly regular case

We have already stressed that Theorem 7.1.1 cannot be viewed as a ver-

sion of Fermat's principle since the trial curves are not restricted to motions

at the velocity of light. What we want to have is a theorem, analogous to

Theorem 7.1.1, where only lifted virtual rays are considered as trial curves

rather than arbitrary curves in M. (Please recall that lifted virtual rays are

defined through Definition 5.2.4.) We are now going to show that such a

theorem holds true for strongly regular ray-optical structures. Contrary to

Theorem 7.1.1 we restrict to variations with fixed end-points in M.

Theorem 7.2. 1. LetX be a strongly regular ray-optical structure on M and

fix a lifted virtual ray  : [81 S21 ) Ar of JV. As allowed variations of  
we consider all C1 maps q: - EO 7 EO [ X [S1 7 S21 ) M with 77(0, -) = A for
which the curves 77 (,-, - ) are lifted virtual rays for all e E ] - eo 7 -o [ and the

curves si) and q( 82) are vertical. Then  is a lifted ray if and only if
d

-j-,6
A(,q (e,  =O

= 0 for all allowed variations q of

Proof. Since allowed variations in the sense of this theorem are, in partic-

ular, allowed variations in the sense of Theorem 7.1.1, the "only if' part is

a trivial consequence of part (a) of Theorem 7.1.1. To prove the "if' part,

let Z: [Sli S21 ) TA( be any CIO vector field along with Z(si) = 0 and

Z(S2) 0. Then we can find a C1 map p: I - 60 7 EO X [S1 i S21 ) X with

IL(O, - =  , p(s, si) =  (si) and A(E, S2) =  (S2) for all e E -0, Eo [ such
that Z is the pertaining variational vector field, i.e., Z(s) = -

, s)'(0) -
In

general the curves p(6, -) will not be lifted virtual rays, so ti will not be an

allowed variation of  in the sense of this theorem. Therefore we consider the

projection r. = -r;4 op: I -EO 7 EO [ X [817 S21 ) M of p to M which gives a vari-

ation of A == r;, o  with fixed end-points. Now we have to recall that strong

regularity guarantees local solvability of (5.10) and (5.11) for the momenta

and for the factor k. By compactness of the interval [sl', S21 this guarantees

existence and uniqueness of an allowed variation q: I - 150 160 [ X [SI 7 S21 ) Ar
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of  , for eo sufficiently small, that projects onto n. We denote the variational

vector field of 77 by Y as in (7.3). Now we have two variations p and 77 of C
both of which project onto n. Hence, the difference between the pertaining
variational vector fields Z and Y must be vertical. Since q is, in particular,

an allowed variation in the sease of Theorem 7.1.1, (7.1) holds true. By hy-

pothesis, 0 = -)) 1..-0. Thus, the last integral in (7.1) has to vanish.
de

Since Y - Z : [811 821 TJV is vertical and C is a lifted virtual ray, this

integral still vanishes if Y is replaced with Z. But Z was an arbitrary C'

vector field along C tangent to Ar that vanishes at both endpoints. Hence, as

in the proof of Theorem 7. 1. 1, the fundamental lemma of variational calculus

implies that C must be a lifted ray. 1:1

If Ar is not only strongly regular but even strongly hyperregular, we can

choose an orientation for X and we can construct a one-to-one relation be-

tween positively oriented lifted virtual rays and positively oriented virtual

rays according to Proposition 5.2.4. In this situation the action functional,

which is defined by (7.1) on curves in T*M, gives a well-defined functional,

A on the set of all positively oriented virtual rays A via

A(A) = A(C). (7.8)

Here C is the unique positively oriented lifted virtual ray that projects onto

A and A(C) is defined by (7.1). Therefore, in the strongly hyperregular case

Theorem 7.2.1 can be reformulated as a variational principle for rays, rather

than for lifted rays, in the following way.

Theorem 7.2.2. (Principle of stationary action for rays) Let M be

a ray-optical structure on M which is strongly hyperregular and thus ori-

entable. Choose an orientation for M and fix a positively oriented virtual

ray A: [S I i S21 ) M. Consider as allowed variations of A all C' maps

K: ] - EO) EO [ X [S 1) S21 ) M with r,(O, - ) = A such that r.(e, si) A(si),

r.(e, S2) = A(S2), and the curves r.(E, - ) are virtual rays for all E E ] 60, -0 [.
Then A is a ray if and only if

d A (r. (E, - )) I e=o = 0 for all allowed variations
de

n of A. Here A is defined through (7.8).

The proof follows immediately from Theorem 7.2.1 and Proposition 5.2.4.

If M is to be interpreted as space (and not as spacetime), Theorem 7.2.1

and Theorem 7.2.2 can be viewed as versions of Fermat's principle. To put this

rigorously, we consider a stationary ray-optical structure and we assume that,

for some value w,, E R, all the assumptions of Theorem 6.5.1 are satisfied such

that the reduction can be carried through. We can then apply Theorem 7.2.1

to the reduced ray-optical structure 9,,., provided that 9,,. is strongly reg-

ular. (Criteria for 9,,. to be strongly regular are given in Propositions 6.5.4

and 6.5.5.) The action functional A of Theorem 7.2.1 equals the optical path

length _T of Definition 6.5.3 up to the constant frequency factor W,. If we

exclude the pathological case w,, = 0, varying A is equivalent to varying 1.

Thus, Theorem 7.2.1 tells us that, among all lifted virtual rays between two
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fixed points in space M, the lifted rays are characterized by making the op-

tical path length IT stationary. This can be viewed as a version of Fermat's

principle. If 9,. is even strongly hyperregular, Theorem 7.2.2 gives a more

familiar reformulation of this result in terms of rays rather than in terms of

lifted rays. In the non-dispersive case the optical path length can be reinter-

preted as a travel time, according to Proposition 6.5.3, and the rays of JV.,,
are the same for all positive values of w, according to Proposition 6.5.2.

Viewed in this sense, Theorem 7.2.2 covers virtually all known versions

of Fermat's principle for stationary situations. Considering stationary vac-

uum ray-optical structures, as in the first part of Sect. 6.6, reproduces Fer-

mat's principle for vacuum light propagation on (conformally) stationary
Lorentzian manifolds as it is given in many textbooks on general relativ-

ity, see, e.g., Landau and Lifshitz [76] or, for the static case, Frankel [43] or

Straumann [1361. Considering stationary ray-optical structures on Minkowski

space, as in the last part of Sect. 6.6, reproduces all elementary textbook ver-

sions of Fermat's principle in ordinary optics.
Theorem 7.2.1 and 7.2.2 also apply to some (necessarily dispersive) ray-

optical structures on spacetimes, e.g., to those of Example 5.1.2 giving light

propagation in a non-magnetized plasma on a general-relativistic spacetime.
In those cases, however, they cannot be interpreted as versions of Fermat's

principle since the trial curves have fixed endpoints not only in space but

even in spacetime.

7.3 Fermat's principle

Now we want to ask if light rays in an arbitrary general-relativistic medium

can be characterized by a version of Fermat's principle. Throughout this

section we presuppose a Lorentzian manifold (M, g) with dim(M) > 2, as in

Chap. 6. Our physical interpretation refers to the case dim(M) = 4 where

(M, g) can be viewed as a general-relativistic spacetime. For an arbitrary

ray-optical structure JV on M, the results of Sect.s 7.1 and 7.2 can then be

summarized in the following way.

In any case, the lifted rays of A( are characterized by the variational

principle of Theorem 7.1.1. This, however, cannot be viewed as a version of

Fermat's principle because the space of trial curves is too big, as outlined

above. If A( is strongly regular, which by Corollary 5.4.1 can hold only if A(

describes light propagation in a dispersive medium, the lifted rays of A( are

characterized by the variational principle of Theorem 7.2.1. This, however,
cannot be interpreted as a version of Fermat's principle either because the

end-points of the trial curves are fixed in spacetime rather than in space.

The results of the preceding sections give a version of Fermat's principle

only in the very special case that Ar is stationary. More precisely, we have

to assume in addition that all the conditions of the reduction theorem (i.e.,
of Theorem 6.5.1) are satisfied for some w,, E R \ 101 and that the reduced
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ray-optical structure 9,,. is strongly regular. Then Theorem 7.2.1 applied to

9,,. gives us a version of Fermat's principle for the lifted rays with frequency
constant w,, in the medium considered. If 9,,. is even strongly hyperregular,
this result can be reformulated as a variational principle for rays, rather than

for lifted rays, according to Theorem 7.2.2.

If JV is a non-stationary ray-optical structure on (M, g), our previous
results do not give us a version of Fermat's principle for its rays or lifted rays.

Therefore we have to formulate another variational principle which needs

some prepaxation. The first step is to define the space of trial curves.

According to the elementary formulation given at the beginning of Chap. 7

Fermat's principle requires to consider motions "at the velocity of light". In

our setting this translates into considering (lifted) virtual rays of Ar. For

convenience we shall restrict to (lifted) virtual rays which are defined on the

fixed parameter interval [0, 1] -

Then we have to impose boundary conditions by fixing "two points in

space". The appropriate way to translate this into a spacetime setting is to

fix a point q and a time-like curve -f in spacetime M, and to restrict to virtual

rays \ that start at q and terminate on -f. q can be interpreted as "a point in

space at a particular time"; -y can be interpreted as "a point in space viewed

over some time interval". Allowing the endpoint to float along a time-like

curve is necessary since Fermat's principle requires to vary the arrival time.

Further physical motivation for considering light rays between a point and a

time-like curve will be given in Sect. 8.4 below whenwe are going to discuss

gravitational lensing.

Finally, as we want to include dispersive media, it is necessary to "fix the

frequency". This requires to choose an observer field. More precisely, what

we shall need is not exactly a time-like vector field on all of M but rather

a time-like vector field along each virtual ray from q to ^J. We introduce the

following definition, see Figure 7.3.

Definition 7.3.1. Let -y be a time-like curve in the Lorentzian manifold

(M, g). A generalized observer field for -y is a map W that assigns to each

virtual ray A that terminates on -y a time-like COO vector field Wx along

,\ that coincides with  at the
- end-point. L e., if A : [0, 1] ) M terrni-

nates at A(1) = -y(T(A)), with T(A) denoting some parameter value, then

,\(,)M for all s E [0, 1]W,\ : [0, 11 TM satisfies the conditions VV,\(s) E T;

and W,\(1) =  (T(X)).

This definition generalizes the notion of observer fields in the following

sense. If W is an ordinary observer field, i.e., a time-like C' vector field on

M, and if -y is an integral curve of W, then the assignment A l ) W o A

gives a generalized observer field for -y. Whereas observer fields do not exist

on Lorentzian manifolds which are not time-orientable, generalized observer

fields always exist for any time-like curve y. E.g., we may define W,\(S) by

parallely transporting the vector  (T(A)) along A
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(1)

T(A))

Al

Fig. 7.3. A generalized observer field for -y, as defined in Definition 7.3.1, assigns
to each virtual ray A that terminates on -j a time-like vector field W,\ along X

Upon choosing a generalized observer field for -/ we may assign a frequency

w(s) to each point  (s) of a lifted ray by the equation

W(s) = - Ws)) (Wx (s)) , (7.9)

provided that A = r, , o  terminates on -y. As, in general, the frequency does

not satisfy a conservation law along rays, the right way to "fix the frequency"
is to prescribe a frequency value w,, for the arrival at y and to require that the

redshift law for lifted rays is everywhere satisfied. (Please recall our discussion

of redshift; in Sect. 6.2.) Collecting all this together, we are led to defining
the space of trial curves 9R(A(, q,,y, W, w,,) in the following way.

Definition 7.3.2. Let M be an arbitrary ray-optical structure on the Lo-

rentzian manifold (M, g). Fix

(1) a point q E M ;

(2) a C' embedding -f: I M from a real interval I into M such that

 = W-Y(.) ;

(3) a generalized observer field W for -y;

(4) a non-zero real number w,, -

Then we define the space of trial curves 9R(A(, q, -y, W, w,,) as the set of all

C' immersions  : [0, 11 ) T*M such that

(a)  is a lifted virtual ray of JV;

(b)  (O) E Tq*M;
(c) there is a T(C) E I such that C(l) E T*Y(T(e))M

(d) ( (1)) ( (T(6))) = -wo;
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(e)  satisfies the redshift law of lifted rays with respect to the generalized
observer field W, i.e., S? (,) ( (s), Q(s)) = 0 for all C' vector fields

Q: [0, 1] ) TA( along  with T-r 4 o Q parallel to W,;,. along -r) o

please recall (6.18).

In terms of a natural chart and a local Hamiltonian, condition (a) requires
that the representation (x(s),p(s)) of  has to satisfy (5.10) and (5.11). By
condition (e), the equation

Wa(s) Pa (S) k(s) Wa(S)
,

(X(s),P(s)) (7.10)
axa

has to hold with the same factor k(s) that appears in (5.11); here Wa(s)
denotes the components of W, ,o (s) -

In the non-dispersive case, i.e., if JV is dilation-invariant, Proposition 6.5.2

gives a natural one-to-one relation between the spaces 9X(Ar, q, -/, W, w,,) and

V(M, q, -y, W, c w,,) for any constant c > 0
-
IfM is not only dilation-invariant

but also reversible, this result carries over to the case c: < 0.

In the stationary case, the distinguished time-like vector field W E ON

gives us a generalized observer field W : A i ) W o A for each integral curve

-y of W. (We hope that the reader will not be confused by our using the same

symbol W for two mathematical objects which are different but related to

each other in an obvious way.) In this special case conditions (d) and (e)
of Definition 7.3.2 are equivalent to saying that the momentum O(W) takes

the constant value -w,, along 6. If, in addition, all the assumptions of the

reduction theorem (i.e., of Theorem 6.5.1) are satisfied, conditions (a), (d)
and (e) of Definition 7.3.2 imply that  = red o 6 is a lifted virtual ray of the

reduced ray-optical structure In the non-stationary case, however, there

is no reduced ray-optical structure and the trial curves have to be defined in

the rather complicated way of Definition 7.3.2.

With the space of trial curves at hand, we are now ready to introduce the

functional that is to be extremized.

Definition 7.3.3. Under the assumptions of Definition 7.3.2,

F : 9R(Ar, q, -y, W, w,,) R

(7.11)
-,-LA( ) + T( )

is called the generalized optical path length functional. Here A denotes the

action functional (7.1) and T denotes the arrival time functional defined by

condition (c) of Definition 7.3.2.

In the non-dispersive case, i.e., if JV is dilation-invariant, the general-

ized optical path length reduces to the arrival time, F( ) = T( ), owing to

Proposition 5.4.7.

In the stationary case, with W given by the distinguished time-like vector

field W E 9A( and 7 an integral curve of W, the reduction theorem (i.e.,
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Theorem 6.5.1) can be used to rewrite the generalized optical path length in

terms of the reduced ray-optical structure, provided that all the assumtions of

the reduction theorem are satisfied. In that case we find that the generalized
optical path length is related to the optical path length of Definition 6.5.3

by F(6) = T(red o  ) + const. for all  E 9R(A(, q, -/, W, w,,), owing to Propo-
sition 6.5.3. This justifies the name "generalized optical path length" for the

functional -T.

Our goal is, of course, to prove that the stationary points of the functional

.F are exactly the lifted rays in 9X(Ar, q, -y, W, w,,). Our previous results suggest
that some kind of regularity condition will be necessary to prove this. The

crucial point is the following lemma.

Lemma 7.3.1. Assume that all the assumptions of Definition 7.3.2 are sat-

isfied and fix a lifted virtual ray 9A(Ar, q, -y, W, w,,). Assume that along
the regularity condition

(Hab) (Ha) (Wa)

det (Hb) 0 0 7 0 (7.12)

(Wb) 0 0

holds in any natural chart and with any local Hamiltonian, where Ha

,OH/49N, Hab = 9H/49paPb, and Wa denotes the components of the vector

field W, ,.C. Consider as allowed variations of  the set of all CO' maps

,q: ] - eo,,-o[ X [0, 1] ) Ar with q(0, - ) = 6 and q(E, - ) E 9X(JV, q, -y, W, w,,)
for all E E I - -0, -0 [. Then the following holds true. If Z: [0, 11 ) TA( is

any Cw vector field along  with Z(O) = 0 and Z(1) = 0, then there is an

allowed variation q of  such that Tr, 4 o (Y - Z) is a multiple of W along

,r) o  . Here Y denotes the variational vector field of q which is defined by

(7.3).

Proof. Let Z: [0, 1] TA( be a COO vector field along  with Z(O) = 0 and

Z(1) = 0. Fix a variation of  in Ar with variational vector field equal to Z

that keeps the end-points fixed, i.e., fix a C' map p: ] - eo, co [ x [0, 1] ) Ar

with p(0, -) =  , 1L(-,s)'(0) = Z(s), tL(,-,O) =  (O) and =  (I). In

general, tt will not be an allowed variation of We shall now use this map

tt for constructing another variation q of  that satisfies all the requirements
of the proposition.

In the first step we give the construction of 77 under the special assumption
that  can be covered by the domain of a natural chart and of a local Hamilto-

nian. Moreover, we assume that the natural chart is induced by coordinates

(Xi I... IXn) on M with W' = J.' along the central curve r) o  . In that

case, our assumption (7.12) allows us to solve the system of equations (5.10),
(5.11) and (7.10) for pl,...,p,,-,, k,:in,P,, along this central curve. By conti

nuity, the same solvability condition is true for curves which are sufficiently

close, i.e., for varied curves with sufficiently small variational parameter E.
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(Here we make use of the fact that our curves are defined on the compact

interval [0, 1].) In other words, with x1, . . . ,
Xn- I known, (5.10), (5.11) and

(7. 10) give us algebraic equations for pi, - . . , p,,- 1 and first order differential

equations for xn and p,, which have to be satisfied by the varied curves to

be constructed. For e =A 0, the coordinate representation of the curve 11(c, -)
will not satisfy the system of equations (5.10), (5.11) and (7.10). However,

we can take the coordinates x
I (e, s), . . . ,

xn- 1 (,-, s) from this representation

and determine the quantities pi, . . - , p,,_ 1, k,. b, Pn, locally uniquely, in such

a way that (5.10), (5-11) and (7.10) hold. Together with the boundary val-

ues xn (e, 0) = xn (0, 0) and p,,(,-, 1) = -w,, this determines a unique curve

- ): [0, 1] ) JV near  for all - sufficiently small. In this way we get an

allowed variationq of  . Its variational vector field Y satisfies the condition of

T-r.; o (Z-Y) being parallel to W,;,. since, by construction, the coordinates

X11 ... I
xn-1 coincide along??(,-, -) and p(e, .).

If  cannot be covered by a single chart of the kind considered above, this

construction must be supplemented by an appropriate matching procedure.

By compactness of the interval [0, 1], we can find finitely many intermediary

points, so = 0 < si < - - - < s,,,-, < s,,, = 1, such that, for each 0 _< i <_

m - 1,  restricted to [si, si+,] can be covered by a chart as considered above.

On each interval [si, si+1] we can then construct q(e, - ): [si, si+1] ) JV

as above, with any choice of initial conditions xn (si) and p ,(si). There is a

unique choice for these initial conditions such that, by joining these segments

together, we get a continuous map iq(e, - ): [0, 11 ) JV that satisfies the

boundary conditions (b) and (d) of Definition 7.3.2. To verify that this map

is, indeed, of class C1 it suffices to check that the first order coordinate

differential equations by which q(e, -) is piecewise defined have a tensorial

transformation behavior. This implies that -) at all of its points satisfies

an invariant first order differential equation with C1 coefficients, so it must

be a C01 map. Thus, q satisfies all the requirements of the lemma. 11

In the stationary case W E 9Ar, condition (7.12) is equivalent to strong

regularity of the reduced ray-optical structure, recall Proposition 6.5.4. In the

stationary or non-stationary case, Proposition 6.5.5 gives a useful criterion for

(7.12) to hold. This criterion implies, in particular, that for the vacuum ray-

optical structure, JV = Mg, (7.12) is automatically satisfied for any time-like

W.

We are now ready to prove Fermat's principle.

Theorem 7.3.1. (Fermat's Principle) Let all the assumptions of Defi-

nition 7.3.2 be satisfied and fix a curve  E 9X(JV, q, -y, W, w,,). Consider

as allowed variations of  all C' maps 77: ] - eo, eo x [0, 1] ) M with

17(0, - ) =  and q(E, E 9X(A(, q, -y, W, w.) for all s E 60, -o Then the

following holds true.
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(a) For  to be a lifted ray it is necessary that 16=0 = 0 for all
de

allowed variations q of  - Here Y' denotes the generalized optical path
length functional defined in Definition 7.3.3.

(b) If the regularity property (7.12) is satisfied along  , this condition is not

only necessary but also sufficient.

Proof. Letq be an allowed variation of  and denote the pertaining variational

vector field by Y, as in (7.3). Then a calculation analogous to (7.1) yields

d Y
TE (n )) Ie=O

_L d A(,q (__, . )) +
d T(n(E, .))1 (7.13)

w,, de J,=0 de
6=0

I

S? (,)( (s),Y(s))ds + 1 (Y(j)) +
d r(?7(,6,

0
Z7.-00) 76- J,_0f

Here we have used the equation Y(O) = 0 which follows from boundary con-

dition (b) of Definition 7.3.2. Now we consider boundary condition (c) of Def-

inition 7.3.2 which implies thatr;4 (q(6, 1)) = ^t (r(77(6, Differentiation

with respect to 6 at E = 0 yields Tr.L (Y(1)) = W
(T(C))

d T(q(e, 1.=o.
ly

de

Now we apply the covector  (I) to this vector equation,and we use boundary
condition (d) of Definition 7.3.2. This shows that the last two terms in (7.3)
cancel, i.e.,

1

d
S?C(,) ( (s), Y(s)) ds (7.14)=0

=

W
, fo

for all allowed variations. If  is a lifted ray, the integrand vanishes since the

curves q(e, - ) are confined to JV. This proves part (a). To prove part (b) we
choose an arbitrary C' vector field Z: [0, 1] ) TjV along  with Z(O) = 0

and Z(1) = 0. By Lemma 7.3.1 we can find an allowed variation 77 with

variational vector field Y such that T-r, 4 o (Z - Y) is a multiple of W, ,.C
along -r, 4 o  . By hypothesis, the right-hand side of (7.14) has to vanish. Since

 satisfies the redshift; condition (e) of Definition 7.3.2 this remains true if

Y is replaced with Z. As Z: [0, 1] ) TA( was an arbitrary C' vector field

along  that vanishes at the endpoints, the fundamental lemma of variational

calculus implies that  must be a lifted ray. El

This theorem may be interpreted as Fermat's principle for light rays in ar-

bitrary media on arbitrary general-relativistic spacetimes. In other words, as

far as the medium and the underlying spacetime is concerned, Theorem 7.3.1

is the most general version of Fermat's principle in general relativity. One

may think of further generalizations by considering spatially extended light
sources and receivers (i.e., replacing the point q and the time-like curve -y by

higher-dimensional submanifolds) or by relaxing the C11' assumption on the
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T(A))

Fig. 7.4. Fermat's principle for vacuum light rays on a Lorentzian spacetime can

be phrased in the following way, see Theorem 7.3.2. Among all light-like curves

from q to -y the vacuum light rays are the extremals of the arrival time functional

T.

trial curves. We shall not be concerned with the first generalization here, but

we shall be forced to deal with the second one in Sect. 7.5 on Morse theory
below.

It is an important feature of Theorem 7.3.1, somewhat unfamiliar from

elementary optics, that the trial curves and the solution curves live in the

cotangent bundle rather than in the base manifold. If we want to reformulate

this theorem as a variational principle for rays, rather than for lifted rays, we

have to assume that the map  1

) -r.; o  is injective on 9R(X, q, 7, W, WO).
This property is related to condition (7.12) like hyperregularity is related

to regularity. We can then reformulate Theorem 7.3.1 in terms of rays, just

as Theorem 7.2.1 could be reformulated as Theorem 7.2.2. If JV is dilation-

invariant in addition, we can free ourselves from the necessity to choose a

generalized observer field W and a frequency constant w,,. This results in a

considerably simplified version of Fermat's principle. Such a simplification
is possible, in particular, for the vacuum ray-optical structure N = Ar-q.

Roughly speaking, the result is that among all light-like curves between a

point and a time-like curve in a Lorentzian manifold the light-like geodesics

are exactly the curves of stationary arrival time. The precise formulation

reads as follows, cf. Figure 7.4.

Theorem 7.3.2. (Fermat's principle for vacuum light rays) Let (M, g)
be a Lorentzian manifold. Fix a point q E M and a C' embedding ^J: I

M from a real interval I into M such that the tangent field of7 is g-time-like

everywhere. Let Z(q, -y) denote the set of all virtual rays of the vacuum ray-
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optical structure A( = Ng (i.e., all g-light-like C"O curves) A: [0, 1] M

with

(a) A(O) = q;

(b) there is a T(I\) E I such that A(1) (T(A))
Fix a virtual ray A E 2(q, -y) and consider, as allowed variations of A, all

CI* maps r.: I - so, so[ x [0, 1] ) M with r.(O, - ) = X and r,,(,-, - ) E Z(q, -y)
for all e E ] - so, so [. Then A is a ray ofA( = Arg (i. e., a geodesic) if and only

if JiT(n(e, 6=0
= 0 for all allowed variations r. of /\. Here T denotes the

df
amval time functional defined on 2(q, -y) by condition (b).

Proof. After choosing a generalized observer field W for -y and an arbitrary
real number w,, : - 0, we consider the space of trial curves O(Arg, q,,y, W, WO)
as it was introduced in Definition 7.3.2. To our virtual ray A E Z(q,'Y) we

assign a map 9R(Arg, q, -y, W, wo) via

6(s) = T('-') gx("') ( (s), (7.15)

where the function k: [0, 1] R \ JO} is defined as the solution of the linear

differential equation

g,\(s) (Wx (s),  (s)) k(s) (W,\(s), V (.) i) k(s) (7.16)

with

k(l) (7.17)

Please note that the metric function on the left-hand side of (7.16) has no

zeros; so k is, indeed, well-defined. (7.15) expresses the fact that 6 is a lifted

virtual ray of A(9 that projects onto A; (7.16) guarantees that 6 satisfies

the redshift condition (e) of Definition 7.3.2 whereas (7.17) takes care of

part (d) of Definition 7.3.2. Hence, 6 is indeed in 9R(A(g, q, ^1, W, w,,). The

same construction gives a bijective relation between allowed variations K of

A and allowed variations, in the sense of Theorem 7.3.1, 77 of 6. As JV9 is

dilation-invariant, the generalized optical path length reduces to the arrival

time, F(n(e, .)) = T(77(e, .)) = T(rs(e, -)). Moreover, it is easy to check

that with the vacuum Hamiltonian H(x,p) = Igab
2 (X)P,,Pb the regularity

condition (7.12) is satisfied for any time-like W at all points of Arg. Hence,
Theorem 7.3.2 is an immediate consequence of Theorem 7.3.1. 13

The idea to formulate Fermat's principle for vacuum light rays in the

version of Theorem 7.3.2 is essentially due to Kovner [741 who emphasized the

relevance of this result in view of gravitational lensing. We shall comment on

applications of Fermat's principle to gravitational lensing in Sect. 8.4 below.

The first proof of Theorem 7.3.2 was given in Perlick [108]. Later, Perlick and

Piccione [1121 have proven a more general version of Theorem 7.3.2 where the

point q and the time-like curve -y are replaced with higher-dimensional sub-

manifolds. This generalization may be viewed as a vacuum Fermat principle
for light sources and receivers which have a spatial extension. We shall not

be concerned with this generalization here.
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7.4 A Hilbert manifold setting for variational problems

Variational problems can be formulated in two quite different ways. First,
there is the traditional formulation we have used so far, where variations

are considered in terms of a parameter s and stationarity of a functional is

characterized by vanishing first derivative with respect to 6 for all "allowed

variations". The advantage of this approach is that it uses nothing but finite

dimensional calculus.

The second method of formulating a variational problem is much more

sophisticated. It consists in representing the functional to be varied as a differ-

entiable mapping.F: 9A ) R defined on some infinite dimensional manifold

of maps. Typically, 9A is modeled on a (real) Hilbert or Banach space, e.g. on

a Sobolev space. A manifold modeled on a mere Fr6chet space might also do

in some case or other. However, this is too weak a structure for most appli-

cations. The elements of 9A are the "trial maps", i.e., the candidates among

which the solutions of the variational problem are to be determined. In this

formulation stationarity of tl e action functional is expressed by vanishing of

the Fr6chet differential d,r, i.e., the solutions to the variational problem are

the critical points of JF.

Once a variational problem has been cast into a Hilbert manifold set-

ting, several interesting results from global analysis become applicable. This

includes, in particular, the body of theorems known as infinite dimensional

Morse theory which was developed in papers by Palais [104], by Smale [131],
and by Palais and Smale [105]. Infinite dimensional Morse theory proved

particularly powerful when applied to the geodesic problem on Riemannian

manifolds, see, e.g., Palais [1041, Schwartz [130] and Klingenberg [721 (73].

Among other things, this approach allows to decide whether a geodesic gives

a local minimum, a local maximum, or a saddle-point of the action functional

by counting the conjugate points along the geodesic. Moreover, on complete

Riemannian manifolds it relates the number of geodesics joining two given

points to the topology of the underlying manifold. At least partly, similar

results were known already before infinite dimensional Morse theory came

into existence. Back in those times it was necessary to use finite dimensional

approximation techniques, introduced by Marston Morse in the 1930s, which

are detailed in a well-known book by Milnor [96).
Rather than in geodesics on a Riemannian manifold we are interested in

rays of a ray-optical structure. To make infinite dimensional Morse theory

applicable to this situation we have to cast one of the variational problems

treated in the preceding sections into a Hilbert manifold setting. It would

be most desirable to work this out for the general Fermat principle given

in Theorem 7.3.1. Unfortunately, this would be extremely difficult. For this

reason we will be satisfied by establishing a Morse theory for the much sim-

pler variational principle given in Theorem 7.2.2, i.e., for the principle of

stationary action for rays of a hyperregular ray-optical structure on M. As

outlined above, this can be viewed as a version of Fermat's principle if M is
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to be interpreted as space. Setting up a Morse theory for the general Fermat

principle of Theorem 7.3.1 will be a challenge for future work. It should be

mentioned, however, that for the vacuum version of this variational principle,
given in Theorem 7.3.2, a Morse theory has been established by Perlick [110)
and, to a fuller extent, by Giannoni, Masiello, and Piccione [47] [48].

In Theorem 7.2.2,the trial curves are virtual rays in the sense of Defi-

nition 5.2.4 and thus C' curves. The basic idea to get a Hilbert manifold

of trial curves is to replace the C' condition with a Sobolev HI condition.

Therefore it will be necessary to recall definition and some basic properties
of H" spaces.

Let C([O, 11, RN) denote the set of all r times continuously differentiable

maps from the interval [0, 1] to RN for any integers r > 0 and N > 1. Define

r I

< f I h >r  E 10 f(') (s) - 0) (s) ds , (7.18)
i=O

lif 11r = vl-< f-If>r (7.19)

for all f ,
h E Cr Q0, 11, RN), where f(i)

: [0, 1] ) RN denotes the i-th deriva-

tive of f and the dot stands for the standard Euclidean scalar product on RN
.

The scalar product (7.18) makes Cr ([0, 1], RN) into a real pre-Hilbert space

the completion of which is by definition the Sobolev space Hr([0,11,RN).
Instead of (7.18) some other topologically equivalent scalar product may

be used, as is done, e.g., by Palais [104] and by Schwartz [130). Note that

HO QO, 1], RN) coincides with the familiar Lebesgue space Ll QO, 1], RN). It is

easy to check that C' QO, 1], RN) is dense in Hr Q0, 1], RN) for all r > 0.

Integration of the identity

32

(82) P) (SI) + ZI f (s) ds (7.20)

with respect to s, from 0 to I and application of Schwartz's inequality quickly
shows, after renaming the arbitrary element S2 E [0, 1] into s, that

if( )(s)j :5 2 11f 11, ,
0 < i < r - 1 (7.21)

for all f E C1 QO, 1], RN) and r > 1. Hence, if functions f,,, E Cr QO, 1], RN)
form a Cauchy sequence with respect to 11 - 11r, then the f.. converge pointwise
towards some f,,. C Cr-1 Q0, 1], RN). For this reason Hr ([0, 1], RN) can be,
and will be henceforth, identified with a subset of Cr- 1 ([0, 1], RN) for all

integers r > 1. The elements of HO QO, 1], RN) = L2QO, 1], RN) can, of course,

only be identified with equivalence classes of functions [0, 1] ) RN
.

The notion of an H' curve in our manifold M is introduced in the fol-

lowing way. By Whitney's embedding theorem (see, e.g., Golubitsky and

Guillemin [49], Proposition 5.9) we can find a CO" embedding j: M ) RN,
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for some positive integer N. With such an embedding j we define for each

integer r > I

H'([O, 1], M) = {A: [0, 1] 0 M I i OA E H'([O, 1], RN) 1 (7.22)

where the ring denotes composition of maps as usual. It is easy to see that

the set Hr ([0, 1], M) does not depend on the embedding i chosen. Moreover,
it is a fundamental result, first stated by Palais and Smale [105], that the

map A i ) j o A makes the set Hr Q0, 1], M) into a C' submanifold of

Hr ([0, 11, RN) and that the Hilbert manifold structure thereby induced on

Hr ([0, Ij, M) is equally independent of j. For r = 1, the proof can be found

in Palais [104] or in Schwartz [130]. Thereupon, the proof for r > 1 can be

given by induction. Henceforth we use this result and consider Hr ([0, 11, M)
as a Hilbert C' manifold in its own right, for all integers r > 1.

Now we repeat the same construction with M replaced by TM. This

gives, for each integer r > 1, a Hilbert manifold HI ([0, 1], TM) that may be

viewed as the tangent bundle of Hr ([0, 1], M). More precisely, the tangent

space of Hr ([0, 11, M) at a point A E HI ([0, 1], M) is given, in the sense of

a natural identification, by

T,\Hr ([0, 1], M) = {Z (=- H'([O, 11, TM) I -rm o Z = AI (7.23)

for r > 1. This becomes obvious if the tangent vectors to Hr QO, 1], M) are

expressed with the help of an embedding j: M RN and its tangent map

Tj: TM ) TRN '-'-R2N.

We now state two simple lemmas which axe readily verified with the help
of an embedding j: M ) RN.

Lemma 7.4.1. For each integer r > 2, a C' curve A: [0, 1) M is in

Hr Q0, 11, M) if and only if its tangent field is in Hr- 1 ([0, 11, TM) The map

Hr QO, 11, M) )Hr-1([0,11,TM), AI ) (7.24)

is a C' map.

Lemma 7.4.2. For each integer r > 1 and each s E [0, 11 the evaluation

map

ev,: H'([O, 1], M) )M' AI )A(s) (7.25)

is a C' map. Its tangent map at a point A E Hr Q0, 1], M) is given by

T,\ ev, : T,\Hr Q0, 1], M) ) T,\(")m ,
Y 1 ) Y(s). (7.26)

Furthermore, we shall need the following important result.
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Lemma 7.4.3. Consider a C' map 0: M, M2 between two finite
dimensional C' manifolds M1 and M2 and fix an integer r > 1. Then

T)(A) = 0 o A defines a COO map di: Hr Q0, 11, Ml) ) Hr QO, 11 1 M2) and

the tangent map T P is given by ((TiP),\(Z))(s) = (TO).X(,)(Z(s)) for all

X E HrQ0,1J,M1), Z ET,\HrQ0'1],M1), and S E [0,1].

For r = 1, the proof can be found in Palais [104] or in Schwartz [130]. For

r > 1, the result was first stated in Palais and Smale [105] and can be proven

by induction over r.

After these preparations we now turn to the problem we are interested in.

7.5 A Morse theory for strongly hyperregular
ray-optical structures

As indicated above, it is our goal to rephrase Theorem 7.2.2 as a variational

principle on a Hilbert manifold. To that end we modify our notion of virtual

rays in two respects. First, we replace the C' condition on virtual rays by
an HI condition, for an appropriate integer r. Second, we choose a global
Hamiltonian and use it for fixing the parametrization of each virtual ray.

(Since Theorem 7.2.2 presupposes a strongly hyperregular ray-optical struc-

ture, it only applies to situations where the existence of a global Hamiltonian
is assured.) We are, thus, led to introduce the following definition.

Definition 7.5.1. If JV is a ray-optical structure on M and H a global
Hamiltonian for Ar, we denote by 93(H) the set of all maps A: [0, 1] ) M

that satisfy the following condition. There is a 6 E H1 QO, 1], Ar) and a c E R+

such that -rL o 6 = A and (-r, 4 o  )
'

= cFHo  .

Lemma 7.4.1 and Lemma 7.4.3 imply that 93(H) C H2QO' 11, M). It is

obvious that each C' curve A E 93(H) is a virtual ray in the sense of Def-

inition 5.1.2. Conversely, any such virtual ray which is defined on a com-

pact parameter interval can be made into an element of 9J(H) by a unique

reparametrization. It is thus justified to say that Definition 7.5.1 translates

our earlier notion of virtual rays into an HI-setting. In natural coordinates,
elements of QJ(H) are represented by exactly those x E H2 QO, 11, R) for

which the system of equations

 ba(s) = c

49H

(X(s)'P(s)) (7.27) Pa

H(x(s),p(s)) = 0. (7.28)

admits a solution c E R+, p E HI QO, 1], Rn). In the strongly hyperregular
case such a solution must be unique.

We write QJ(H), rather than Z(Ar), to indicate that this set depends on

the choice of a global Hamiltonian. However, if H and ft are two global
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Hamiltonians for one and the same ray-optical structure, there is a natural

one-to-one relation between 93(H) and Z(ft) given by relating those curves

to each other which coincide up to reparametrization.

We are now going to show that, in the strongly hyperregular case, 93(H)
carries a natural Hilbert manifold structure.

Proposition 7.5.1. Let Ar be a ray-optical structure on M. Assume that H

is a global Hamiltonian for Ar such that the map UH: Ar x R+ ) TM de-

fined by (5.16) is a C' diffeomorphism onto its image. (Please recall that, by

Definition 5.2.2, such a global Hamiltonian exists if and only if Ar is strongly

hyperregular.) Then T(H) is a C' submanifold of H2([0' 1], M).

Proof. We denote the image Of 0`H by C+. Since OH is a C' diffeomorphism

onto its image, its differential has maximal rank. Hence, C+ is open in TM.

As a consequence Lemma 7.4.1 implies that the set

H2 ([0,1],M;C+) ={A EH
2 Q0, 1], M) I  E H1 Q0, 11, C+) } (7.29)

is a C' submanifold of H2Q0, 1], M) -
Now we introduce the map

X: H
2 Q0, 1], M; C+) ) H'1Q0, 11, R+)

(7.30)
/\1 )pr200*H_ O 

where pr2: X x R+ R+ denotes the projection onto the second factor.

It follows immediately from Lemma 7.4.1 and Lemma 7.4.3 that X is a C'

map. This map is defined in such a way that 9J(H) = X-'(R+) where the set

of constant functions from [0, 1] to R+ is identified with R+. By Lemma 7.4.2,

R+ is a COO submanifold of HI Q0, 1], R+). Now the statement of the propo-

sition follows if we are able to prove that X is a submersion. To that end we

pick an element \ E T(H) C H2Q0, 1], M; C+). Then the equation X(A) = c

has to hold with some c E R+. By continuous extension of the tangent map

T,\X : T,\H2 Q0, 1], M; C+) ) TcHl Q0, 11, R+) 5--- H1 Q0, 1], R) (7-31)

we get a map

T,\X : T,\H2 ([0, 1], M; C+) ) Ho ([0, 1], R) , (7-32)

where T,\H2 Q0, 1], M; C+) denotes the closure of T,\H2 Q0, 1], M; C+) in

H1 ([0, 1], M). Since pr2 0 OH
-I is homogeneous, any f E H1 Q0, 1], R) has to

satisfy the equation

TA_X(f c f (7.33)

This proves that the image of T,\X is dense in H1 Q0, 1], R). On the other hand

the image of T,\X is a closed linear subspace of H1 Q0, 1], R). Both observations
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together imply that the image of T.\X is all of H1 QO, 1], R), i.e., that X is a

submersion at the point A. As this result holds for all A E qj(H), we have

proven that T(H) = X-1(R+) is a closed submanifold of H200' 11, M; C+)
and, thus, a submanifold of H'([O, 1], M). 11

If the assumption of strong hyperregularity is satisfied, we can use this

result and view T(H) as a Hilbert C' manifold in its own right. To impose
boundary conditions we need the following proposition.

Proposition 7.5.2. Under the assumptions of Proposition 7.5.1, the map

11: Z(H) M x M
,

A (A(O), A(1)) (7.34)

is a C' submersion. Thus,

93(H; q) = {A E Z(H) I A(O) = q 1 (7.35)

is a closed C' submanifold of Z(H), and

Z(H; q, q) =  A E 93(H) I A(O) = q, A(1) = q' (7.36)

is either empty or a closed C' submanifold of 93(H; q) for any q and q' in

M
-

Proof. By Lemma 7.4-2, H is a C' map. To prove that IT is a submersion,
we pick any element A E T(H). Then the equation X(A) = c has to hold with

some c: E R+, where the map X is defined by (7.30). Again by Lemma 7.4.2,
the tangent map of IT at the point A is given by

TxIT: T
2
([0' 1], M)XZ(H) C TxH TA(0)M X T'\(1)M

Y 1 ) (Y(O), Y(1)) .

We consider the continuous extension

T,\-H: T,\Z(H) ) T,\ (0)M X T,\(1)M

of T,\17, where T,\93(H) denotes the closure of T,\QJ(H) in T,\Hl QO, 1], M).
Let Y be an arbitrary element of T,\Hl QO, 1], M). So, in particular, Y(O)
and Y(1) are arbitrary vectors in T.\(O)M and T,\(,)M, respectively. We want

to find a function f E H1 QO, 1], R) such that

f/\ E T,\QJ(H) . (7.37)

Since we know from the proof of Proposition 7.5.1 that Z(H) = X-'(R+),
the function f satisfies (7.37) if and only if

T,\-x(Y + f ) = T,\-x(Y) + C const. (7.38)
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For any choice of const. (7.38) has a unique solution f E H1 Q0, 11, R) with

f(0) = 0. By integrating (7.38) from 0 to I we see that there is a unique
choice for const. such that the corresponding solution f satisfies the boundary
condition f(1) = 0. With this function f we get

T,\--Iy(Y + f ) = (Y(0), Y(1)) (7.39)

which proves that T,\H is surjective, i.e., that the image of T,\H is dense in

T\(o)M x T,\(,)M. On the other hand, the image of T,\11 is a closed subspace
of T,\(O)M x T,\(,)M. Thus, 1Y is a submersion. n

To define the action functional on QJ(H), we have to recall that, by Propo-
sition 5.2.4, for a strongly hyperregular ray-optical structure there is a one-

to-one relation between virtual rays and lifted virtual rays. Translated into

our Hr-setting, this gives rise to the following proposition.

Proposition 7.5.3. Under the assumptions of Proposition 7.5.1, the map

F: 93(H) )H1([0,1],T*M), Ai )prjOaH-10 (7.40)

is injective and of class C'. Here prl: JV x R+ Ar denotes the projection
onto the first factor.

Proof. Lemma 7.4.1 and Lemma 7.4.3 guarantee that 35- is a C' map. By

Proposition 5.2.4, the restriction of S to 93(H) n COO Q0, 1], M) is injective.

By continuous extension, must be injective. 0

It is not difficult to show that, moreover, E-3 is an immersion. In natural

coordinates SE-F is represented by the map x
l ) (x,p) given by solving (7.27)

and (7.28) for c E R+ and p E H1 Q0, 1], R'). Hence, for every Z E T,\QJ(H)
with coordinate representation 6x E H' Q0, 1], R), the coordinate represen-

tation (Jx, Jp) E H1 Q0, 1], R2n) of the vector T =(Z) satisfies the system of

equations

6(b- - c

aH

(X)p))(s) = 0, (7.41)
'OP.

6 (H(x, p)) (s) = 0
, (7.42)

with some Sc E R. As our notation suggests, one should think of 6 as of the

derivative with respect to a variational parameter E at the point E = 0, and

one should calculate the left-hand sides of (7.41) and (7.42) with the help
of the ordinary chain rule and product rule. This procedure is justified by
Lemma 7.4.3. Moreover, 5 and (.)' commute since the derivative map from

Hr+1 ([0, 11, RN) to HI Q0, 1], RN) is linear.

We are now ready to define the action functional A on Q(H), i.e., to

translate (7.8) into our Hr-setting.
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Proposition 7.5.4. Let all the assumptions of Proposition 7.5.1 be satisfied.
Then the action functional A: QJ(H) ) R defined by

A(A) = 0 = 11 ((E(A)) ( )) (s) ds (7.43)is
(A) 0

is a C' map. Here denotes the map introduced in Proposition 7.5.3.

Proof. A is the composition of the following three maps.

QJ(H) --> H1 QO, 1], TM (D T*M) --* H1 QO, 1], R) --+ R (7.44)

A E(A)) - (EF(A)) (A) f ((E(A)) ( )) (s) ds
00

Here TM E) T*M denotes the fiber bundle over M whose fiber at q E M

is TM x Tq*M. The first map in this -sequence is a C' map owing to

Lemma 7.4.1 and Proposition 7.5.3. The second map is, again, a C' map as

can be seen by applying Lemma 7.4.3 to the natural pairing map between

vectors and covectors. Finally, the last map in the sequence is obviously linear

and, with the help of inequality (7.21), it is easy to check that it is continuous.

Thus, A is the composition of three C' maps. 1:1

If H and ft are two global Hamiltonians for a ray-optical structure A(

both of which satisfy the assumptions of Proposition 7.5.1, Proposition 7.5.4

gives us a C' action functional on Z(H) and on 93(fl). If we identify Z(H)
and QJ(H) in the way outlined above, these two action functionals are easily
shown to be related in the following way. From Proposition 5.1.3 we know

that H and satisfy, on their common domain of definition, an equation of

the form ft FH with a nowhere vanishing function F. If F is positive, the

action functionals on Z(H) and 93(fl) coincide. If F is negative, they differ

by sign.
A can be represented with the help of natural coordinates in the form

1

A(A) = fo p,, (s) &'(s) ds . (7.45)

Here x E H2([0, 1], R') denotes the coordinate representation of A E QJ(H)
and (x, p) e H1 QO, 1], R2n) denotes the coordinate representation of ----(A) in

the notation of Proposition 7.5.3. In other words, the function s 1 ) p(s) is

determined by solving the system of equations (7.27) and (7.28) for c E R+

and p E HI QO, 1], R). We may use the representation (7.45) even if A cannot

be covered by a single chart. We just have to read the integrand as an invariant

function that takes the given form locally in any natural chart.

Now we view A as a composition of three maps, as in the proof of Propo-
sition 7.5.4, and we apply Lemma 7.4.3. This shows that the Fr6chet differen-

tial (dA),\: T,\93(H) ) R can be derived from (7.45) by calculating, in the
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usual way of differential calculus, the derivative with respect to a variational

parameter E under the integral. Denoting this derivative at e = 0 by 9 we get

(dA),\ (Z) 10 (Jp. t' + p,, &t') (s) ds = (7.46)

1 (bp. c

M
(x, P) Jx') (s) ds + p,, (1) Jx'(1) - p,, (0) Jx'(0)

0 19P.0

f
1

( _ c jxa
aH

(X, P) jXa) (s) ds + Pa (1) jxa (1) - P(' (0) jXa (0)
0

TXW
0

for Z E T,\T(H). Here we have used (7.27) and (7.42). As in (7.41) and

(7.42), 6x E H
2 Q0, 1], R) represents Z and (6x, 6p) E H1 Q0, 1], R2n) repre-

sents T--'--(Z). It is now easy to prove the desired H'-reformulation of Theo-

rem 7.2.2.

Theorem 7.5.1. Consider the situation of Proposition 7.5.1. Let Aq,q, de-

note the restriction of the action functional A, defined in Proposition 7.5.4,
to the Hilbert manifold T(H; q, q) of Proposition 7.5.2. Then '\ E QJ(H; q, q)
is a my if and only if the Fr6chet differential (dAq,ql),\ is equal to zero.

Proof. For \ E QJ(H; q, q'), the differential (dAq,ql),\ is equal to zero if and

only if (dA),\(Z) = 0 for all Z E T,\93(H) with Z(O) = 0 and Z(I) = 0.

By continuous extension, this is the case if and only if the last line in (7.46)
vanishes for all 6x 1], R') w!th_x (0) = 0 and 6x(1) = 0 that repre-

sent elements Z E T,\T(H), where T,\T(H) denotes the closure of T,\T(H)
in T,\Hl Q0, 1], M). From the proof of Proposition 7.5.2 we know that those

Jx are of the form 6xI (s) = ya (s) + f(S)  ta (S), where y is an arbitrary el-

ement of H1 Q0, 1], R) with y(O) = 0 and y(l) == 0 and f is some function

in H1 Q0, 1] , R) with f(0) = f(1) = 0. However, the term proportional to

the tangent field gives no contribution to the last integral in (7.46) as is

easily verified with the help of (7.27) and (7.28). Hence, the Fr6chet differen-

tial (dAq,ql),\ is zero if and only if the last integral in (7.46) vanishes for all

6x E HI Q0, 1], Rn) with 6x(O) = 0 and 6X'(1) = 0. Owing to the fundamental

lemma of variational calculus, generalized into an Hl-setting by continuous

extension, this is the case if and only if

P"(s) = _c

IH

(x(s),P(S)) (7.47)
,oXa

i.e., if and only if the H' map s ) (x(s),p(s)) satisfies not only (7.27) and

(7.28) but all the ray equations. This concludes the proof since, by induction,
s i ) (x(s),p(s)) must then be an H' map for all r E N, i.e., it must be a

CI map. 11

With this proposition we have achieved our goal of formulating a varia-

tional principle for rays of a strongly hyperregular ray-optical structure in a
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Hilbert manifold setting. In a nutshell, the rays from q to q' are the critical

points of the functional Aq,ql : 93(H; q, q') ) R, i.e., the points where this

functional has a local minimum, a local maximum, or a saddle point. These

three types of critical points can be distinguished by looking at the second

derivative of Aq,ql i.e., at the Hessian of Aq,,, at A,

Hess,\Aq,ql T,\Z(H; q, q') x T,\93(H; q, q') R (7.48)

(X,\,Y,\) i ) Hess,\Aq,q'(XA,Y,\)=(XYAq,ql),\.

Here X and Y denote any C' vector fields (i.e., derivations) on 93(H; q, q')
with values X,\ and Y,\, respectively, at the point A. If (dAq,q,),\ = 0, the

Hessian is indeed well-defined (i.e., it depends only on the values of X and

Y at the point A), and it gives a symmetric continuous bilinear form on the

Hilbert space T,\W(H; q, q').
Clearly, if the Hessian is non-degenerate, it characterizes the critical point

in the following way. Depending on whether the Hessian is positive definite,
negative definite, or indefinite, the critical point is a strict local minimum, a

strict local maximum, or a saddle point. If the Hessian is degenerate, third or

higher order derivatives have to be considered for characterizing the critical

point.
In this connection it is helpful to recall the following standard terminology.

For a symmetric continuous bilinear form (P: Y) x.0' ) R on a Hilbert space

b, the index ind(fl is, by definition, the maximal dimension.of a subspace of

S5 on which (P is negative definite. The extended index ind,' (fl is, by definition,
the maximal dimension of a subspace of .1r) on which  P is negative semidefinite.

The nullity null(fl is the dimension of the kernel of  P. Then

ind,,(fl = ind(fl + null((P) (7-49)

since, by Hilbert space algebra, the orthocomplement of the kernel of  P can

be decomposed into two orthogonal subspaces on which  P is positive definite

and negative definite, respectively.
For a C' (or, more generally, C2) function on a Hilbert manifold, the

index of the Hessian at a critical point is called the Morse index of the critical

point. If the Hessian is non-degenerate at all critical points, the function is

called a Morse function. Clearly, the Hessian at a critical point A is non-

degenerate if and only if the extended Morse index of A coincides with the

Morse index of A. A strict local minimum has vanishing Morse index (but
not necessarily vanishing extended Morse index). Conversely, if the extended

Morse index of A vanishes, A is a strict local minimum.

In terms of natural coordinates the Hessian of Aq,q, at a critical point A

can be calculated from (7-46) with Jx(O) = 0 and 5x(l) = 0 by differentiat-

ing with respect to another variational parameter s'. If we write J' for this

derivative at e' = 0, we find
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1 aH
Hess,\Aq,ql (ZI 7 Z)

0

J1 (P- + c
5  (x, p)) (s) Jx'(s) ds

(7.50)

In
1

J
OH

+ c (s) ds'
X T (X, P)) (S) J'x

0
Tx

for Z, Z' E T,\93(H; q, q'). Here (Jx, Jp) and (J'x, Yp) denote the coordinate

representations of T-'---(Z) and T-'---(Z'), respectively. The first equality in

(7.50) holds since A is a ray which implies that (7.47) is satisfied. The second

equality in (7.50) holds since the Hessian is symmetric.
We shall now give a criterion for Hess,\Aq,ql to be non-degenerate. To that

end we use the notion of Jacobi fields which was introduced, for arbitrary ray-

optical structures, in Definition 5.6.2.

Theorem 7.5.2. Let, in the situation of Theorem 7.5. 1, \ E T(H; q, q') be

a ray and Z E TX93(H; q, q'). Then Z is in the kernel of Hess.\Aq,ql if and

only if Z is a Jacobi field along A.

Proof. As in the proof of Theorem 7.5.1, we work in natural coordinates

for notational convenience. The following argument is valid independently of

whether or not the considered curve can be covered by a single chart.

Please recall that the coordinate representation (bx, 6p) of T-'---(Z) has

to satisfy (7.41) and (7.42). If Z is a Jacobi field, (5.46), (5.47) and (5.48)
must be true. Comparison shows that the function Jk must be equal to the

constant Jc such that (5.48) takes the form

J(Pa + c

OH
(X1 A) (8) = 0

- (7.51)

Now we can read from (7.50) that Z is in the kernel of the Hessian. Conversely,

if Z is in the kernel of the Hessian, the last integral in (7.50) vanishes for

all Yx that represent elements Z' E 93(H; q, q'). Hence, the last integral in

(7.50) vanishes for all Yx E H2QO' 1], Rn) with Yx(O) = 0 and Yx(l) = 0.

This follows from the fact that any such Yx is the coordinate representation

of some Z' E T,\Z(H; q, q') up to adding a multiple of the tangent field of A

which drops out from (7.50) anyway. The same trick was used already in the

proof of Theorem 7.5.1. Here the situation is even more convenient since A is

a C' curve such that its tangent field is, in particular, an H2
map and not

only an H1 map. Now the fundamental lemma of variational calculus implies

that (7.51) has to hold. To complete the proof that Z is a Jacobi field we still

have to verify that Z is a C' map. We know that (Jx, 6p) E H1 QO, 1], R2n).
By induction, (7.51) and (7.41) imply that (Jx, 6p) E H'([O, 11, R2,,) for all

r E N, i.e., that Jx and Jp are, indeed, C' maps. 13

In the terminology of Definition 5.6.3, this proposition implies that

Hess,\A,,ql is degenerate if and only if q' = A(1) is conjugate to q = A(O)

along A, and that the nullity of the Hessian equals the multiplicity of the
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conjugate point. Please note that in each Jacobi class along a ray A E Z(H)
there is a unique representative J E T,\93(H).

It is instructive to illustrate these results by specializing to the ray-optical
structure of Example 5.1.5 where the rays are the geodesics of a (positive
definite) Riemannian metric 9+. For the Hamiltonian given in this example,
93(H) is the set of all \ E H

2 Q0, 11, M) with g+ ( ,  ) = const. and A is

the g+-Iength functional. In this case Hess,\Aq,ql is (the H2 version of) the

standard index form of Riemannian geometry and the notions of Jacobi fields

and of conjugate points are the familiar textbook ones, see e.g. Bishop and

Crittenden [15], Chap. 11.

Similarly, specializing to the ray-optical structure of Example 5.1.2 gives
the analogous results for time-like geodesics of a Lorentzian metric which

should be compared with Beem, Ehrlich and Easley (111, Sect. 10.1. Note that

for the Hamiltonian H given in Example 5.1.2 A is the negative Lorentzian

length functional on time-like curves. Switching from H to -H yields the

positive Lorentzian length functional instead.

Now we want to relate the Morse index of a critical point A of Aq,q, to the

number of conjugate points along A, thereby generalizing the classical Morse

index theorem for Riemannian geodesics. Partly as a preparation for that

we prove the following criterion for a critical point to be a minimum. This

criterion applies to rays that are associated with a classical solution of the

eikonal equation. (Please recall Sect. 5.5.) It generalizes a classical theorem of

variational calculus, based on the socalled Weierstrass excess function, into

our setting of ray -optical structures. In the language of traditional variational

calculus, rays associated with a classical solution of the eikonal equation are

usually characterized as being "embedded in a field of extremals".

Theorem 7.5.3. Let, in the situation of Theorem 7.5. 1, A,, E Z(H; q, q')
be a ray. Assume that there is a classical solution S: U C M ) R of the

eikonal equation H o dS == 0 such that the lifted ray is completely
contained in dS(U), where denotes the lifting map of (7.40). Then the

following holds true.

(a) If, for the Hamiltonian H under consideration, the matrix on the left-
hand side of (5.15) is not only non-degenerate but even positive definite

along (in one and thus in any natural chart), then A,, is a strict

local minimum of Aq,ql -

(b) If the Hamiltonian H: W R is defined on a domain W 9 T*M such

that W n Tq*M is convex for all q E M, if the matrix (o9'H1apa19Pb)
is positive definite at all points u E W (in one and thus in any natural

chart), and if the domain U of S covers all curves A E Z(H; q, q'), then

,\,, is a strict global minimum of Aq,ql -

Proof. We use the coordinate representation (7.45) of A and its restriction

Aq,ql. As in the proof of Theorem 7.5.1 and Theorem 7.5.2, coordinates are

employed for notational convenience only. The following argument remains
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valid even if U cannot be covered by a single chart. Then we find for all

X E 93(H; q, q') contained in U

Aq,ql (A) - Aq,ql (I\o) = I(p,,., ') (s) ds -(9,,S(x,,).,t')(s)ds. (7.52)0

n0 0

Here (x, p) is the coordinate representation of -F(A) whereas (x, aS(x,,)) is

the coordinate representation of As x(O) = xo(O) and x(l) = x,,(1),
we can replace x,, by x in the second integral. With (7.27) this puts (7.52)
into the form

Aq,ql (A) - Aq,ql (Ao) :-4: ((P,, - i9,,S(X)) Co9H (x, p)) (s) ds.
'

(7.53)fo
i

ap.

If A is close to A,,, p(s) is close to aS(x(s)). In that case, as H is a C' and

thus C2 function defined on an open neighborhood of Ar, Taylor's theorem

implies

H(x(s),aS(x(s))) (7.54)

H(x(s),p(s)) +
'H

(x(s), P(s)) ('9aS(x(s)) _Pa(s)) +
ON

1 92H
(X(S), P'(S)) (0a S(X(S)) - Pa (S)) (i9bS(X(S)) - Pb(S))

for some Pa(S) = Pa(S) + O(S) (aaS(X(S)) - Pa(s)) with 0 < O(s) < 1. The

left-hand side of (7.54) vanishes since S is a classical solution of the eikonal

equation. The first term on the right-hand side vanishes since all curves in

Z(H) satisfy (7.28). Hence, inserting (7.54) into (7.53) results in

Aq,q'(, ) - Aq,ql (I\o)= (7.55)

C
1

(
192H

(X, P ) (19aS(X) - Pa) (9bS(X) - Pb) ) (s) ds
 JO 19Pa C9Pb

for X sufficiently close to X0. Now the positive definiteness assumption of part

(a) implies that the matrix (a2H1aPa19Pb)(X(S)7P(S)) is positive definite on

vertical vectors tangent to- JV. By continuity, for A sufficiently close to \,,, the

integrand in (7.55) is strictly positive unless Pa(S) = i%S(x(s)). The latter

equation holds for all S E [0, 11 if and only if X = \,, since /\ satisfies the

same boundary conditions and the same parametrization fixing condition as

A,,. This completes the proof of part (a).
If the convexity assumption of part (b) is satisfied, we can use (7.54)

even if A is not close to \,,. Thus, under the assumptions of part (b), (7.55)
is valid for all A E 93(H; q, q'), and the integrand is strictly positive unless

p,,(s) = a,,S(x(s)). From the proof of part (a) we know already that the

latter equation holds for all s E [0, 1] if and only if A = \,,. 11
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From Proposition 5.5.5 we know that for a sufficiently short ray A,, we

can always find a classical solution S of the eikonal equation such that

is contained in the image of dS. Hence, under the positive definiteness as-

sumption of Theorem 7.5.3 (a) a sufficiently short ray always gives a strict

local minimum of the respective functional Aq,ql. This positive definiteness

assumption is satisfied, e.g., for the Hamiltonian of Example 5.1.5 which

gives the geodesics of a (positive definite) Riemannian metric, but also for

the Hamiltonian of Example 5.1.2 which gives the time-like geodesics of a

Lorentzian metric. Please note that we are always free to change H into

-H, thereby inverting the sign of the functional A and turning minima into

maxima and vice versa.

We are now ready to prove a generalized Morse index theorem.

Theorem 7.5.4. (Morse index theorem) Let, in the situation of The-

orem 7.5. 1, A E Z(H; q, q') be a ray and assume that, for the Hamiltonian

considered, the matrix on the left-hand side of (5.15) is positive definite at

all points of in one and hence in any natural chart. Then the extended

Morse index of /\ satisfies the equality

ind,, (Hess,\Aq,ql) n(s) . (7.56)
S

Here the sum is to be taken over all s E 10, 11 such that \(s) is conjugate to

A(O) along A, and n(s) denotes the multiplicity of this conjugate point. (Note
that, by Proposition 5.6.3 this sum is finite.)

Proof. Let T,\QJ(H; q, q') be the closure of the tangent space T,\T(H; q, q')
in T,\H'([O, 11, M), and let HessxAq,q, be the continuous extension of the

Hessian onto this space. To verify that this extension exists, we recall that

the Hessian is given, in terms of natural coordinates, by (7.50). (Again, co-

ordinates are used for notational convenience only. The following argument

remains true even if \ cannot be covered by a single chart.) If we shift the

derivative from J/pa to jxa by means of a partial integration, we get a man-

ifestly H1 continuous expression. Thus, the extended Hessian is given by

Hess,\Aq,ql (ZI, Z) f
1

J/Pa &ta C

OH

xa) (s) ds. (7.57)9Xa(X)P))J

For each s E 10, 1] we define a map A': [0, 11 ) M by AI(s) = A(s's).
Clearly, A' is a critical point of Aq,,\(,). To ease notation, we write

S),=T,\,,T(H;q,A(s)) and !Ds=Hessx.Aq,A(s)- (7.58)

If we choose C' vector fields El, . . . ,
E.- 1 along A such that the vectors

El (s), . . . , E,,,- I (s),  (s) are linearly independent for each S E [0, 1], then the

Hilbert space .1r)s can be identified with the Hilbert space
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55 = JZ E H1 QO, 1], Rn-1) I Z(O) = Z(I) = 01 (7.59)

for each s E ]0, 1]. Viewed in this sense as a one-parameter family of sym-

metric bilinear forms -P,: S5 x S5 ) R on a single Hilbert space,  % depends

continuously on s in the weak sense, i.e., the map s ) 4i, (Z, Z) is continu-

ous for all Z E S5. This follows from the behavior of the integral (7.57) under

parameter transformations. We now introduce the notation

i(s) ind( %) ind(Hess,\,,Aq,A(,)) ,

i,,(s) ind,,((P,,) ind,, (Hess,\. Aq,,\(,)) (7.60)

n(s) null(q5,,) null(Hess,\.Aq,A(,))

where in each line the first equality is a definition and the second equality
holds since the process of continuous extension leaves index, extended index

and nullity unchanged. Note that, by Theorem 7.5.2, n(s) is different from

zero if and only if A(s) is conjugate to A(O) along A and that it gives the mul-

tiplicity of this conjugate point. Thus, by Proposition 5.6.3, n(s) is different

from zero only at finitely many points s E ]0, 1], and at each of those points

it takes a finite value, see Figure 7.5. We shall now discuss the behavior of

the functions i and i,,: ]0, 1] Nm, where NOO denotes the nonnegative0 0

integers including infinity. To that end we define, for 0 < s < s' < 1, a map

K""': b, ) S5,, by

(Z)) (s") = Z(2 s") for 0 < s" <
1

1

2
(7.61)

(KS's, (Z)) (S") = 0 for - <sII<1-
2

-

Note that this map is, indeed, well defined. (This construction does not

work for H2
curves. Therefore, the extension to H1 curves was necessary.)

Clearly, K,,,, is linear, continuous, and injective (but not surjective, of course).

Moreover, with the help of (7.57) we find that (Ty (Z', Z') = P, (Z, Z) for

Z' = n,,,, (Z). Hence, if 45, is negative definite (or negative semidefinite, re-

spectively) on a certain subspace of Sj,, then this subspace is mapped by

K,,,, onto a space of the same dimension on which 4i,, is negative definite (or

negative semidefinite, respectively). This implies that the functions i and i,,

are monotonic, i.e.,

i (s) :!5 i (s') and i,, (s) ::_ i,,, (s') for 0 < s < s' < 1 (7.62)

We now fix a parameter value s E ]0, 1] and decompose the Hilbert space

--J)' into orthogonal subspacesffl) = S5+( ffl)- EDS)", where S5' is the kernel

of (P, and (fi, is positive definite on.5)+ and negative definite on S5-. Since 4 ,,

depends continuously on s in the way outlined above,  P,+, is still positive

definite on S')+ and negative definite on _ - for lel sufficiently small, i.e.,
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Fig. 7.5. The left-continuous function i(s) and the right-continuous function i.(s)
have jumps at those isolated points where the nullity n(s) is different from zero,

see the proof of Theorem 7.5.4.

i(s) < i(s + E) and i"(S)  ! i"(S + (7.63)

for JEJ sufficiently small. (If s = 1, E must, of course, be negative. Otherwise,

(7.63) holds for positive and negative e.) From (7.62) and (7.63) we can

determine the behavior of i and i,, in the following way, see Figure 7.5. On

each open interval on which n is equal to zero, i and i,, = i+n coincide. (7.63)
shows that i = i,, must be constant on such an interval. Moreover, (7-63)
and (7.62) imply that i is left-continuous whereas i,, is right-continuous, i.e.,

i (s - 0) = i(s) and i,, (s + 0) = i,, (s). Thus, at each of the finitely many points

s where n(s) =36 0, the function i,, jumps by an amount of i,,(s) - i(s) = n(s).
This gives the equality

i,, (e) + n(s) (7.64)

where e must be so small that n vanishes on the interval ]0, el. From Propo-
sition 5.5.5 we know that a sufficiently short ray can be associated with a

classical solution of the eikonal equation. We can thus apply Theorem 7.5.3

(a) to the ray A'. This shows that i,&) = i(,-) must be equal to zero. Together
with (7.64), this proves the desired result. 1:1

Specialized to the ray-optical structure of Example 5.1.5, where the rays

are the geodesics of a Riemannian metric, Theorem 7.5.4 reproduces the

classical Morse index theorem for Riemannian geodesics. As a matter of fact,

our proof of Theorem 7.5.4 followed the proof of the classical Morse index

theorem, as it is given, e.g., in Bishop and Crittenden [15], Chap. 11, as

closely as possible.

Specialized to the ray-optical structure of Example 5.1.2, where the rays

are the time-like geodesics of a Lorentzian metric, Theorem 7.5.4 reproduces
the Morse index theorem for time-like geodesics, cf. Beem, Ehrlich, and Easley

[11], Sect. 10.1.
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For applications of the Morse index theorem one usually restricts to the

case that A(l) is not conjugate to A(O) along A, i.e., that the Hessian is

non-degenerate. In this case (7.56) has the following consequences.

A is free of conjugate points if and only if A is a local minimum of Aq,ql -

There is a point A(s) conjugate to A(O) along A, for some S E ]0, 1[, if and

only if A is a saddle-point of Aq,ql- Maxima cannot occur since, by Proposi-
tion 5.6.3, the right-hand side of (7.56) is finite.



8. Applications

In this chapter we illustrate our results with examples and indicate some

applications to astrophysics and astronomy. In the beginning we show how

our formalism can be used to reobtain some standard textbook results. Later

we are going to give some more sophisticated applications.

8.1 Doppler effect, aberration, and drag effect

in isotropic media

For a light ray passing through a medium, a moving observer will register

(a) a different frequency, (b) a different spatial direction and (c) a different

velocity in comparison to an observer who is at rest with respect to the

medium. It is our goal to calculate the respective formulae for an isotropic

medium, thereby determining (a) the Doppler effect, (b) the aberration and

(c) the drag effect in such a medium. We perform these calculations on an

arbitrary Lorentzian spacetime manifold for a medium in arbitrary motion.

However, in essence this is an exercise in special relativity since only algebraic
calculations on tangent spaces are involved.

According to Sect. 6.3, light propagation in an isotropic medium on a

Lorentzian spacetime manifold (M, g) is given by a Hamiltonian in terms of

an optical metric g,,,

H(x, p) = .1 gab (X) PaPb =2 0

1 9
ab (X) + Ua (X) Ub(X)

_ Ua(x) Ub(X)
(8.1)

n(X)2 ) PaPb -

Here the gab are the contravariant components of the spacetime metric g,

the Ua are the components of a vector field U on M with gab UaUb = -1

that gives the rest system of the medium, and the function n: M ) [1, 00[ is

the index of refraction. By assuming that n is bounded by I and independent
of the frequency -UaPa we restrict to ray-optical structures that are causal

and dilation-invariant. The latter restriction means that the following results

apply to non-dispersive media only. At the end of this section we shall briefly
comment on the dispersive case.

ute
V. Perlick: LNPm 61, pp. 183 - 210, 2000
© Springer-Verlag Berlin Heidelberg 2000
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U

vacuum light V

\vacuumnight.cone .............../.conecone

VvV

TT,T'M

Fig. 8.1. u is the spatial velocity of the medium in the reference frame V and -v

is the spatial velocity of the V-observers in the rest system of the medium.

We now consider another vector field V with gab Va Vb = - 1. The relative

velocity of the observer field V with respect to the observer field U is given

by a function 3: M [0, 1 [ defined by

gab ua 0 = -

1
(8.2)

. f(j__#2)

Here we assume that U and V point into the same half of the g-cone. Then the

normalization conditions on U and V imply that, indeed, gab Ua Vb < _1; So

,3 is well-defined. With the help of this function )3 we introduce vector fields

u and v via

Ua '02 Ua - Va Oa = Ua - ,'32 and V1 _,32 Va, (8.3)

which obviously satisfy

gab Ua Vb = gab joa Ub = 0,
(8.4)

gab UaUb = gab ,a ,b =,32.

u is the spatial velocity vector field of the medium in the reference frame V,
whereas -t) is the spatial velocity vector field of the V-observers in the rest

system of the medium, see Figure 8.1.

At each point of a light ray its momentum can be decomposed, with

respect to the observer field V and with respect to the observer field U, into

frequency and spatial wave covector according to (6.8) and (6.9),

W = _Pa Va and ka =Pa-wgab Vb, (8.5)

W* = -Pa Ua and k* = Pa gab Ub. (8.6)a

Here and in the following quantities in the rest system axe marked with an

asterisk. In terms of these quantities the dispersion relation gab
o PaPb = 0 Can

be written in either of the two following forms.
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(1 _ p2)(gab ka kb _ W2) - (n2- 1) (k,, Ua _ W)2 = 0
, (8.7)

9ab k* k* - n2W*2 = 0 (8.8)
a b

Moreover, a quick calculation shows that

ka Ua = W - VI _'82 W* (8.9)

,,
a
= VFj__* '32 (8.10)k

a

The spatial direction of a ray is determined by its ray velocity (6.11) which

can be calculated with respect to the observer field V and with respect to

the observer field U. With the Hamiltonian (8.1) we find

ab

Va = _

go A
_ Va

, (8.11)
deVc gcd go Pe

ab

V*a = _

go A
_ _ Ua. (8.12)

deUc gcd go Pe

If we use the dispersion relation, a straight-forward calculation puts (8.11)
and (8.12) into the forms

' /_1
Va

'32 gab kb + (n2 - U)* Ua

V-1--,32)w + (n2 - W*

-

1 (8.13)

V*a -
9
ab k*

b

w*n2
(8.14)

This shows that the ray velocity is not parallel to the spatial wave vector

unless in the rest system of the medium. (In the vacuum case n = 1, every

observer field can be viewed as the rest system.) To characterize the spatial

direction of the ray we introduce angles 0 and 0* via

Vaub =
-

  -Vb
-

Ub COS 0gab Vf9ab V/gab Ua (8.15)

gab V*a Vb = V/gab V*a V*b VI'gab Va tob COS 0* (8.16)

We are now ready to derive the desired results.

(a) Doppler effect

After our preparations, the Doppler formula is easily derived by inserting

(8.14) into (8.16). With the help of (8.8) and (8.10) this results in

W W*1+nP cosO*
(8.17)

V-1--p2

In the vacuum case n = 1, (8.17) reduces to the standard Doppler formula

which is given in any textbook on special relativity for the case that U and

V are inertial systems on Minkowski space. Our argument proves the (rather
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trivial) fact that, pointwise, the same formula holds for observers in arbitrary
motion on an arbitrary Lorentzian spacetime manifold. From (8.17) we read

that the transverse Doppler effect (0* = 7r/2) is unaffected by n. This reflects

the well-known fact that the transverse Doppler effect is caused by time

dilation alone. Linearization of the relativistic Doppler formula with respect
to 3 yields the classical Doppler formula. The quadratic corrections to this

formula were verified for the first time by Ives and Stilwell [65] in a laboratory

experiment with canal rays, cf., e.g., French [44], Sect. 5.7.

The Doppler formula (8.17) should not be confused with the redshift for-

mula (6.23). Contrary to (6.23), (8.17) compares two frequencies at the same

point with respect to two different observers. Whenever frequency measure-

ments at two different points are to be compared one should use the redshift

formula (6.23). The latter is of paramount importance in cosmology where

the influence of a medium is usually considered to be negligible. The redshift

formula in a medium has some relevance in view of precision experiments
with so-called microwave links in our Solar system, see, e.g., Bertotti [13].
In these experiments, microwaves are exchanged between two spacecrafts or

between a spacecraft and the Earth, and the emitted and received frequencies

are measured with a relative accuracy of 10-14 or 10-15. Owing to this high

accuracy, the influence of the interplanetary medium (or, for signals grazing

the Sun, of the Solar corona) on the frequency shift is very well measurable

in experiments of this kind. It is true that such frequency measurements with

microwave links are usually called "Doppler measurements"; nonetheless, it

is not the Doppler formula (8.17) but rather the redshift formula (6.23) which

provides a theoretical basis for those measurements.

As a typical application of the Doppler formula (8.17) to astronomy we

consider an inertial system V on Minkowski space and we assume, as an

idealization, that our galaxy is at rest with respect to V in the temporal

average. We assume that the worldline of the Earth is an integral curve of

U. Then, along the worldline of the Earth, the function 8 defined by (8-2)
gives the velocity of the Earth relative to V in units of the vacuum velocity
of light. This is mainly determined by the orbital motion of the Solar system

around the center of our galaxy, with smaller corrections coming (i) from the

peculiar motion of the Solar system, (ii) from the yearly rotation of the Earth

around the Sun, and (iii) from the daily rotation of the Earth. This orbital

motion takes place with a velocity of about 3 0.00083 which corresponds
to 250 km/s in conventional units. With 0* ir and n = 1 (8.17) yields
w* = 1.00083 w. Thus, an observer on the Earth sees starlight coming to us

("head-on") from the apex of the Solar motion blueshifted by about 0.083 %

in comparison to a fictitious observer at the same place who is at rest with

respect to our galaxy. For light coming to us at 0* = 11, the Doppler effect
2

is purely transverse and yields a tiny redshift of only 0.00003 %. Since these

calculations were done with n = 1, the influence of our atmosphere was

ignored. In the optical regime the atmosphere can be treated as an isotropic
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non-dispersive medium with n = 1.0003. To within the given accuracy, this

leaves the above results unchanged. When using the Doppler formula (8.17)
in situations like that with n 54 1 it is important to keep in mind that not

only the observed frequency w* but also the fiducial frequency w is to be

measured in the medium.

(b) Aberration

We now turn to the derivation of the aberration formula by inserting (8.13)
into (8.15). After some algebraic manipulations using (8.7), (8.9), and (8.17),
we find

Cos 0
cos 0* +0

(8.18)
.\/-(n + 3 COS 0*)2 - (1 - 02) (n2 - 1)

Please note that, by (8.15) and (8.16), 0 and 0* are defined in terms of

the ray velocity (=group velocity) and not in terms of the phase velocity.

Thus, (8.18) gives the aberration of rays, as it is measured with an ordinary

telescope, and not the aberration of wave surfaces, as it is measured with

adaptive optics devices. This makes a difference since, as long as n 0 1, the

direction of the ray velocity does not coincide with the direction of the phase

velocity.

Setting n = 1 in (8.18) yields the standard aberration formula for vacuum

which is given in any textbook on special relativity for the case that U and

V are inertial systems on Minkowski space. With 3 = 9.92 - 10-5 (orbital

velocity of the Earth around the Sun, in units of the vacuum velocity of

li ht) and 0 = E (light coming from a star S at the pole of the ecliptic), this
9 2

vacuum aberration formula yields cos 0* = -0.000099. Hence, at the celestial

sphere of an observer on the Earth the star S performs a yearly circular

motion with radius 20.5" around the pole of the ecliptic. By an analogous

calculation, a star which is not at the pole of the ecliptic performs a yearly

elliptical motion with major semi-axis 20.5". This effect was observed already

in 1728 by Bradley.
It was found by Airy in the 19th century that the aberrational ellipses are

unchanged if they are measured with a telescope filled with water (n c-- 1.5)
rather than with air (n  --- 1), cf., e.g., Preston [1211, p. 538. At first sight,

this result seems to be at variance with (8.18). However, (8.18) only says that

the relation between 0 and 0* depends on n. A deeper analysis shows that, if

the telescope is filled with water rather than with air, the observed angle 0*

remains unaffected whereas the fiducial angle 0 changes. The situation is quite

analogous to the Doppler effect. Both the Doppler formula and the aberration

formula give a relation between two quantities measured by different observers

at the same place in the same medium.

(c) Drag effect

Our next goal is to visualize the dependence of the ray velocity on the spatial

o Pa A = 0 impliesdirection. By (8.11), the dispersion relation gab
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(go)ab (Va + Va) (Vb + VI) = 0. (8.19)

Here the

(go)ab = n2gab + (n2 - 1) gac Uc gbd Ud (8.20)

are the covariant components of the optical metric, (go)ab gbc = jac. After
0

some algebraic manipulations (8.19) takes the form

n2 (1 _'32) (gab VaVb _ 1) + (n
2
- 1) (gab Ua Vb _ 1)2 = 0. (8.21)

This equation demonstrates that the indicatrix (6.14) of a non-dispersive
isotropic medium with respect to an arbitrary observer field V is an ellipsoid,
see Figure 8.2. Our causality assumption n > 1 implies that this ellipsoid is

completely contained in the vacuum light sphere, gab Va Vb < 1. If we pass to

the rest system, the indicatrix turns into a sphere,

gab V*a V*b - -1 (8.22)ny

For the sake of completeness we also calculate the figuratrix (6.13) to visualize

the dependence of the phase velocity on spatial directions. The definition

(6.10) of the phase velocity implies that

ka -
W Wa

(8.23)
gab Wa Wb

With (8.23), the dispersion relation (8-7) yields

(I _ p2) gab _ gab Wa
2

Wa Wb (I ,Wb)
(8.24)

n (gab Wa Wb _ Ua Wa)2.(

The figuratrix is, thus, a fourth order surface, see Figure 8.2. Our assumption
n > 1 guarantees that gab Wa Wb :f , 1, i.e., not only the ray velocity but also

the phase velocity is bounded by the vacuum veclocity of light. If we pass to

the rest system of the medium, the figuratrix turns into a sphere,

ab W* W* 1
9 a b -n7 - (8.25)

Hence, for the rest system figuratrix and indicatrix coincide if we identify

tangent space and cotangent space in the usual way with the help of the

spacetime metric.

For rays parallel or antiparallel to the relative motion we can use the

relations gab V
a Ub  iO'\/gcd Vc Vd and Wa Ua :L,3 N/ w , wd. In this

situation (8.21) and (8.24) imply

N//gab Va Vb = 'A wa Wb (8.26)
n
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,3 = 0 0 <,3 < I P = 1 1
<,3 < i

n n n

Fig. 8.2. This picture shows the figuratrix (top) and the indicatrix (bottom) for

different values of the observer's velocity 3 in an isotropic medium with index of

refraction n > 1. The vertical axis is chosen parallel to the observer's velocity
relative to the medium. Analytically, the figuratrix is given by the fourth order

equation (8.24) whereas the indicatrix is an ellipsoid given by (8.21). The dashed

circle indicates the vacuum light sphere, i.e., figuratrix and indicatrix for n = 1.

Please note that for -1 < 3 < I the observer's velocity exceeds the velocity of light
n

in the medium whereas it is still limited by the vacuum velocity of light. In each

case the intersections with the vertical axis are determined by (8.26).

Note that, by (8.22) and (8.25), 1/n is the absolute value of the ray

velocity and of the phase velocity in the rest system of the medium. Hence,

(8.26) says that, in the relative direction of motion, both the ray velocity and

the phase velocity obey the familiar relativistic addition theorem for spatial
velocities. For the phase velocity, this result can be tested by interference

experiments with light propagating through moving fluids. Such experiments
have been performed by Fizeau in 1851 who verified the equation

-ab-
n

(8.27)N/rg Wa; b =--
"
T -ny

which was heuristically suggested already earlier by Fresnel. Obviously, (8.27)
follows from (8.26) by neglecting quadratic and higher order terms in 3. On

the basis of 19th century physics, the factor (1 -
'

) in (8.27) was hard to
ny

understand. If light propagates in an ether, and if spatial velocities are to

be added in the Newtonian way, then (8.27) seems to suggest that the ether

is "partially dragged along" by the medium. If we stick to this outdated

terminology, Figure 8.2 illustrates the drag effect in an isotropic medium for

all spatial directions.

We end this discussion with a quick remark on generalizations to disper-
sive isotropic media. From Sect. 6.3 we know that then the Hamiltonian (8. 1)
is still valid, but now n is not only a function of the spacetime point but also



190 8. Applications

of the frequency w* = -U'p,,. It is easy to check that this generalization
leaves the Doppler formula (8.17) unchanged, whereas in the aberration for-

mula (8.18) n has to be replaced by n + w*,9n1c9w* everywhere. For those

frequencies for which w* o9n/o9w* is small compared to n, (8.18) is still a valid

approximation. As long as the function w* i ) n(w*) has not been specified,
nothing can be said about the form of indicatrix. and figuratrix with respect
to an arbitrary observer field. In the rest system, indicatrix and figuratrix,
are spheres as in the non-dispersive case, but the radius of either sphere now

depends on the frequency.

8.2 Light rays in a uniformly accelerated medium

on Minkowski space

As in the preceding section we consider an isotropic medium, i.e., a Hamilto-

nian of the form (8.1). This time we specialize to the case that the spacetime
metric is the Minkowski metric,

g = (dXl)2 + (dX2)2 + (dx3)2 - (dX4)2, (8.28)

and we restrict our considerations to the subset

M = {(Xl,X2,X3,X4) C- R4 1 (X3)2> (X4)2 1 (8.29)

of Minkowski space. The index of refraction is supposed to be a constant

n > 1 and the medium is supposed to be in uniformly accelerated motion,

U -

1
4

19
+ x

3
'0

(8.30)
,1-(X3)2-+(X4)2 (X 9X3 9X4 ) I

see Figure 8.3. The integral curves of this vector field are known as Rindler

observers, and M is known as the Rindler wedge, cf. Rindler [123], Sect. 8.6.

For the calculation of light rays in this medium it is convenient to introduce

new coordinates (x, y, z I t) via

XI = X
,

2

3

Y

(8.31)
x = z cosht,

4
X = z sinht.

The momenta transform according to
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U

3

Fig. 8.3. The Rindler observer field U occupies a wedge-shaped region of Minkowski

space.

P1 =Px I

P2 =Py i

P3 = Pz cosh t -
Pt

sinh t
(8.32)

z

p4 = -pz sinh t +
Pt

cosh t
.

z

In the new coordinates, the Minkowski metric reads

g = dx2
+ dy2+ dZ2 _ Z2 dt2, (8.33)

the Rindler wedge is represented as

M = I (X, Y, Z,t) E R
4

1 Z   . 01, (8.34)

and the observer field (8.30) takes the simple form

U =

1 a
(8.35)

z

Inserting into (8.1) yields the Hamiltonian

2 +P2 +P2 p2
H(x, y, z, t, px, pj, p ,, pt) =1

PX
-

Y_ z t ) . (8.36)
2 ( n2 Z2

As the coordinate t does not appear in the Hamiltonian H, the dispersion
relation H = 0 determines a stationary ray-optical structure in the sense of
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Definition 6.5.1, W = i9/& E 9,\r. (As W is orthogonal to the hypersurfaces
t = const., this ray-optical structure is even globally static.) By Proposi-
tion 6.2.2, this implies that the function f = In z is a redshift potential for

the observer field (8.35). In other words, the redshift under which a Rindler

observer at z = z, is seen by a Rindler observer at z = z2 is given by the

formula

W2 ZI
= -

7 (8.37)
W1 Z2

cf. equation (6.26). This result is true for any (constant) value of the index

of refraction n.

With the global timing function t and any real constant w,, 34 0, all

assumptions of the reduction theorem (i.e., of Theorem 6.5.1) are satisfied.

This gives us a reduced ray-optical structure 9,,. for each w,, :7 0 on

M' = I (x, y, z) E R
3 1 z > 0 1 - (8.38)

By (6.78), we find a Hamiltonian ft for this reduced ray-optical structure

simply by setting pt equal to -w,, in (8.36),
21

(P2 2 WOfi(X7 Y7 z7pxlpylpz) =
2n2 X

+ PY + PD -

2Z2
(8.39)

Hence the dispersion relation of 9,,. takes the form

1" pl, p, = n2 W2
(8.40)0

where the Y" are the contravariant components of the Riemannian metric

dx2
+ dy2 + dz2

(8.41)
Z2

The Riemannian manifold is the socalled Poincar6 half-space which

is dicussed in many textbooks on differential geometry, see, e.g., Thorpe [143],
p. 236 and p. 242.

We have thus shown that the rays of R.,, coincide with the geodesics of

the Poincar6 half-space. It is well known and easily verified that the latter

are all those half-circles in M that meet the surface z = 0 orthogonally,
see Figure 8.4. Please note that the rays of 9,,. are independent of the

(constant) index of refraction n. They are, of course, also independent of W,,

which reflects the fact that our medium is non-dispersive.
This calculation exemplifies our findings of Sect. 6.6. There we have seen

that the rays of a reduced ray-optical structure are the geodesics of a Rie-

mannian metric whenever the following two properties are satisfied. The

stationary ray-optical structure to which the reduction formalism is applied
must be given as the null cone of a Lorentzian metric g,,, and the time-like

vector field W E 9Ar must be hypersurface-orthogonal with respect to g,,. In

particular, the optical path length is then given as the -Iength which implies
that Fermat's principle reduces to the geodesic variational problem for the

metric .
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'61Y

Fig. 8.4. The rays of R.. are the geodesics of the Poincar6 half-space which are

half-circles.

8.3 Light propagation in a plasma on Kerr spacetime

If we consider the plasma model of Chap. 3, light rays propagating in a non-

magnetized plasma on an arbitrary Lorentzian spacetime manifold (M, g) are

determined by a Hamiltonian H of the form

H(x,p) = .1 (g,b(X) PaA + WP(X)2) . (8.42)2

Here the gab are the contravariant components of the spacetime metric g and

the spacetime function wp is the "plasma frequency" which is determined by
the electron density of the plasma according to (3.51). More precisely, we have

seen in Chap. 3 that our plasma model gives a dispersion relation with three

branches, determined by three Hamiltonians (3.44), (3.45) and (3.46), and

that only the third Hamiltonian, which is of the form (8.42), is associated with

light rays passing through the plasma. If the plasma frequency has no zeros

(i.e., if the plasma covers the whole spacetime region under consideration),
the ray-optical structure determined by the Hamiltonian (8.42) is of the kind

considered in Example 5.1.2.

In this section we want to discuss the rays of this ray-optical structure for

the special case that the underlying Lorentzian manifold (M, g) is the Kerr

spacetime. In Boyer-Lindquist coordinates (r, 0,  p7 t), the Kerr metric reads

g =
P2

dr2 + p2&32 +

2 2) 2 W2

'A

r 2

(8.43)
(r + a sin V d _ dt2 +

2m
--.(asin VdW_dt)2,

P2
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where p
2
= r2 + a

2 CO,92 79 and A = r
2- 2 m r + a2, see, e.g., Hawking and

Ellis [59], Sect. 5.6. We assume that the real constants m and a satisfy the

conditions m > 0 and a
2
< M2

.
Then the Kerr metric mathematically models

the spacetime region around a rotating (but uncharged) black hole with mass

m and angular momentum ma. In the region where r is large enough it also

gives a valid approximation for the spacetime around a rotating star. For

a = 0 the Kerr metric reduces to the Schwarzschild metric which models the

spacetime region around any spherically symmetric massive body.
From (8.43) we can calculate the contravariant components gab of the

metric. This puts the Hamiltonian (8.42) into the form

2 +p I
H(r,,O, W, t, Pr i RO, Pw, PO

Pr
2

0
+ (8.44)

2 p

p
2- 2mr 2mrasin2,o 2 2 2 W2

2,0 (PW - 2 A -

P Pt
+ P

2,A p2 sin P -2mr 2p2 - 4mr 2

It should be noted that the Kerr metric is a vacuum solution of Einstein's

field equation. Hence, the use of the Hamiltonian (8.44) is physically justified
as long as the gravitational field produced by the plasma can be neglected.

In the following we restrict to the region where the vector field o9lat is

time-like, i.e.,

r > M + V/M2 - a2 COSO. (8.45)

This is the region outside the socalled ergosphere. Moreover, we assume that

the plasma frequency is independent of t whereas it may depend arbitrarily
on r, W and V. In other words, we assume that the electron density of the

plasma is stationary. Please note that, for our plasma model, the velocity of

the plasma has no influence on the light rays and can therefore be arbitrary.
Under these assumptions the vector field W = 0/49t generates a time-like

symmetry, i.e., our ray-optical structure is stationary in the sense of Defini-

tion 6.5.1, and the coordinate function t is a timing function in the sense of

Definition 6.5.2.

We want to carry through the reduction process of Theorem 6.5.1 in order

to dicuss the spatial paths of light rays. To that end we have to choose a real

number w,, : 0 for the frequency and we have to restrict to the region where
the inequality

2

2
<

2
(8.46)W 

P
2
- 2mr

uJ'

is satisfied. It can be read directly from (8.44) that a ray with pt = -W,,

cannot exist outside this region. It is then easy to check that all hypotheses
of Theorem 6.5.1 are satisfied, i.e., that we get a reduced ray-optical struc-

ture on the 3-manifold M' determined by the inequalities (8.45) and

(8.46). We get a Hamiltonian for this reduced ray-optical structure simply by
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replacing the conserved momentum coordinate pt in (8.44) by the constant

-w, please cf. (6.78). As always, we are free to multiply this Hamiltonian

with an arbitrary nowhere vanishing function. This shows that

ft (r,,O, W, P" PO, PW) = (8.47)

'AP2 +p2 +
2

2

PP +
2mraw,,sin2a

2

r V ( pz-2mr
W2

-2 0-WO 2 P2 W

P p:1-2mr t)

is a Hamiltonian for the reduced ray-optical structure 9".. This Hamiltonian

ft is of the form (6.103), with the Riemannian metric  and the one-form

given by

 = P2
P2 WP2 dr2

+ d,02 +
A sin2,o

dW
2

(8.48)2   -2 -T 2-2mr(P -2mr
0
) (

P

2mrasin2,o
dW. (8.49)

P2-2mr

The lifted rays of 9.,, are, thus, determined by (6.104), (6.105), and (6-106),
whereas the rays are determined by (6.107) and (6.108). In analogy to (6. 111),
the optical path length takes the form

S2 2 W2  2 A sin2,o
V + 2 + 02

P
- (s) ds -P 3P r;;722: -p

2 mM r
2 2
0

-2mr mr P

152 (2mrasin
2tg

0)(S) ds. (8.50)
2-2mrP

By Fermat's principle, the light rays of frequency WO between any two points
in A' are the extremals of the functional 1. In the Schwarschild case a = 0,
the rays are exactly the -geodesics, otherwise they are modified by a kind of

Coriolis force. Contrary to the situation considered in (6.111), here the metric

depends on the frequency w, thereby reflecting the fact that our plasma is

a dispersive medium. By the same token, the optical path length functional

(8.3) does not give the travel time with respect to the timing function t,

unless in the vacuum case Lo. = 0. Please note that the limit WO -+ oo leads

to the same result as setting the function wp equal to zero; hence, in the limit

of infinite frequency the rays approach the vacuum rays.

In the following we want to use these general results to calculate the total

angular deflection of light rays in the equatorial plane V = 7r/2. From now

on we assume that the plasma frequency wP is a function of r alone, i.e.,
that the electron density of the plasma is rotationally symmetric. Then the

W-component of (6-105) takes the form
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(r-2m) Pw
+

2ma

0 =
(wo r-2m)

(8.51)
,r (r2 - 2 mr + a2) ( r

_

w (r)2
r-2m

and the W-component of (6.106) says that p. is a constant of motion. On the

other hand, (6.107) yields

r WP(r)2 r2 2
+

(r2 -2mr+a2) r02
1.

r-2m W2 r2 - 2 mr + a r-2m
0

(8.52)

Upon dividing (8.3) by 02 and using (8.51) on the right-hand side we find

r2 dr
2

+
r (r2 -2mr+a2)

r -2mr+a (dW) r-2m

2 2 2)
2 (02 (8.53)

r (r -2mr+a
r_2m W'25'__

2

(r - 2M)2 Pw +
2ma(Wo r-2m)

For each possible choice of the constant of motion p., this equation deter-

mines the orbits of the corresponding light rays. In the following we are only
interested in light rays that come in from r = oo, reach a minimum radial

coordinate r = R, and go out to r = oo afterwards, i.e., we exclude all light
rays that are captured by the central body. Then dr/dw must have a zero at

r = R and (8.53) allows to express the constant of motion p. in terms of R

in the following way.

A0
+

2ma
2

(8.54)(wo R-2m) -

R (R2 -2mR+a2) R w,, (R)
2

R-2m R-2m W2
0

With the help of this equation, (8.53) takes the form

Vr-(r_-2m) dr
-

h(r)2
2 (8.55)r2-2mr+a2 dW 2ma

_

2ma
h(R)2 (r-2m R-2m

where we have introduced the abbreviation

h(r)
r(r2-2mr+a2) r Wp(r)2

(8.56)
r-2m _ -2m_ W2

0

Solving (8.55) for dW and integrating over the whole ray results in
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(8.57)
-1/2

V/r(r - 2 m) h(r)2
2 fR r2-2mr+a2 2ma

-

2ma h(R)2
2

dr

(r-2m R-2m

where the upper sign is valid for corotating rays (0 > 0) and the lower sign

is valid for counterrotating rays (0 < 0). The difference between 'AW and

7r gives the total deflection angle of the ray, see Figure 8.5. If the function

w,,(r) has been specified, this deflection angle can be calculated to arbitrary

accuracy from (8.57), e.g., by numerical integration. The result depends, of

course, on the frequency w,, which is hidden in the function h(r).

Fig. 8.5. The deviation of AW from 1r gives the light deflection.

In the Schwarzschild case a = 0 the formula for the deflection angle sim-

plifies to

00 dr

J.A pj = 2
hr

(8.58)fR
Vr-(r--2m) :Vh(OrR?) 

where the function h(r) is now given by

W,(r)2
h(r) = r (8.59)

W2 r -r2
m

0

This formula can be used, e.g., for calculating the deflection of light rays in

the Solar corona. Phenomenological formulae for the electron density nO(r)
and, thus, for the plasma frequency

(8.60)
M
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in the Solar corona can be found in the literature, see, e.g. Zheleznyakov [151].
Actually, the electron density in the Solar corona shows a considerable tem-

poral variation, roughly snychronized with the Solar activity cycle of about

I I years. As an average, one often uses the socalled Baumbach-Allen formula

0
6

16) 108
n(r) = (L., 'r,

+ 2.99
'r'

(8.61)
r6 r16 CM3

where r,, denotes the radius of the Sun. With wp(r) specified by such a phe-
nomenological formula, the integral in (8.58) can be calculated numerically.

In the case wp(,r) = 0 or, equivalently, for w,, --+ oo, (8.58) gives the

deflection of vacuum light rays in the Schwarzschild metric,

R2 dr
1,AWI = 2 JR, VR (R - 2 m) H - R4 r2 + 2 m R4 r

(8.62)

If we linearize this elliptic integral with respect to m/R, we find

I'Awl = (8.63)

CK) 3 R3) drR dr 2m R(r
2 + 0 (M2)fR'

rVr-2_-R2
+
T fR

r Vr-2_-R23 R2

The two integrals on the right-hand side can be calculated in an elementary
fashion with the substitution u = R/r. This results in the standard textbook

formula

IA(PI =,7r +
4 m

+ 0 (rn2) (8.64)
R R2

for vacuum light rays in the Schwarzschild metric, cf., e.g., Wald [146],
eq. (6.3.43), or Straumann [1361, eq. (3-4-6).

The deflection given by formula (8.64) can be modeled with the help of a

logarithmically shaped lens with an index of refraction n > 1, see Figure 8.6.

For a rotationally symmetric lens with a profile given by the equation

x + k In Y = const., (8.65)

Snell's law implies that rays parallell to the axis are deflected by 5 k
(n- 1)R

up to terms quadratic in
k

. Comparison with (8.64) shows that, to within lin-
R

ear approximation, this value coincides with the deflection in a Schwarzschild

spacetime where k
(n - 1) corresponds to the mass m. (Here it goes without

4

saying that one has to identify the deflection angle J produced at the surface

of the lense with the total deflection angle 5 = JA oj - -7r in the Schwarz-

schild metric.) Thus, a lense with the appropriate logarithmic shape can be

used to approximately visualizing light deflection by a spherically symmetric
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Fig. 8.6. To within certain approximations, the light deflection in a Schwaxschild

spacetime can be mimicked with the help of a logarithmically shaped lens.

gravitating body. Such plastic lenses have been actually manufactured and

are often used in didactic demonstrations. For practical instructions and ad-

ditional theoretical information we refer, e.g., to Higbie [64] and to Nandor

and Helliwell [99].
Similarly to a lens in ordinary optics, a gravitational field can lead to

multiple imaging or to the effect that a pointlike light source is seen as an

extended object, e.g. as an arc or as a ring. In situations like that we speak

of "gravitational lensing". This will be the topic of the next section.

8.4 Gravitational lensing

In the last section we have rediscovered the relevant formulae for light rays

being curved by the gravitational field of a massive body. For a light ray not

directly influenced by matter, passing a spherically symmetric body of mass

m at a minimal radial distance R, the deflection angle is given by formula

(8.62) or, to within linear approximation with respect to m/R, by formu-

la (8.64). For a light ray grazing the surface of the Sun, m G-h' 1.5 km and

R _ -- 696 000 km, this gives a deflection angle

J = JAW1 - ir c--- 1.75". (8.66)

The simple assumption of light particles having a non-vanishing mass, leaving

Newtonian physics unchanged otherwise, would lead to only half that value,
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as was found by Johann von Soldner already in 1801, see Lenard [79]. It was

the greatest triumph in the history of general relativity when the relativistic

value (8.66) of the deflection angle was confirmed, to within tolerable error

bounds, by observations during a total Sun eclipse in the year 1919. Historical

details on the 1919 expedition, organized by the Royal Astronomical Society
of London and headed by Arthur Eddington, can be found, e.g., in Pais [103],
p. 303. In later years the development of radio telescopes made it possible to

measure the relativistic deflection of rays at any time, not just during a total

Sun eclipse, and with strongly increasing accuracy. Recent measurements,
using very-long-baseline interferometry, have confirmed the relativistic value

to within 0.02 %, see Lebach et al. [781. Here the influence of the Solar corona

on the deflection of radio rays has to be taken into account. As a matter

of fact, nowadays measurements of this kind are performed chiefly with the

intention to gain information about the Solar corona.

(a) rotationally symmetric situation

(b) non-symmetric situation

Fig. 8.7. In a rotationally symmetric situation, gravitational lensing can lead to

the effect that a pointlike light source is seen as a ring around the deflector. In a

non-symmetric situation, there might be a number of discrete images.

For an observer on the Earth, the deflection of starlight by the gravi-
tational field of the Sun causes only a tiny distortion of the configurations.

However, much more drastic effects are possible if (i) the mass-to-radius ratio
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of the deflecting body is bigger than that of the Sun, and/or (ii) the distance

between observer and deflecting body is bigger than the distance between

Earth and Sun. Then it is even possible that the observer sees more than

one image of a light source at his or her celestial sphere. In a rotationally

symmetric situation, the observer would see a pointlike light source as a ring

around the deflector, in a less symmetric situation there might be a number

of isolated images, see Figure 8.7. It has become common to speak of gravita-

tional lensing in situations like that. This term was indirectly introduced by

Lodge [85] who was the first to discuss the question of whether the effect of

the gravitational field of the Sun upon light rays is similar to that of a lens. It

should be mentioned that Lodge's discussion cannot be viewed as genuinely

general-relativistic since it is based on an ether theory. (Incidentally, it is well

known that Sir Oliver Lodge always maintained a skeptical if not rejecting

attitude towards general relativity.) Therefore, it is better justified to credit

Eddington [34] [35] and Chwolson [28] who independently pointed out the in-

principle possibility of gravitational lensing on the basis of general relativity.

In particular, Chwolson [28] was the first to mention the ring phenomenon

depicted in Figure 8.7 (a). At that time the practical observability of gravita-

tional lensing was a completely open question. In his only publication on this

subject, Einstein [39] gave a deeply pessimistic view. (From a scribbled calcu-

lation in Einstein's private notebook, discovered only in the 1990s, we know

that he had thought about multiple imaging by gravitational fields already

in 1912, when the final formalism of general relativity was still to be found.)

Zwicky [152] was the first to consider gravitational lensing by extragalactic

objects, but his subsequent observations remained without success. It was

not before 1979 that the first promising candidate for gravitational lensing

was found. In that year Walsh, Carlswell, and Weyman [1471 suggested that

the double quasar 0957+561 is, actually, only one quasar which is gravita,

tionally lensed by an intervening galaxy. By now, this explanation is accepted

by a large majority of astrophysicists, and many other promising candidates

for gravitational lensing have been found, including multiple quasars, radio

rings, and luminous arcs. For detailed reviews we refer to Schneider, Ehlers,

and Falco [128] and to Refsdal and Surdej [122]. In addition, the reader may

consult a regularly updated electronic review by Wambsganss [145] and a

forthcoming book on mathematical aspects of gravitational lensing by Pet-

ters, Levine and Wambsganss [115].
Purely spatial pictures, such as Figure 8.7, are appropriate to illustrate

gravitational lensing in stationary situations only. In time-dependent situ-

ations (e.g., if the deflector is moving non-stationarily) it is inevitable to

switch to a spacetime description. If, in addition, the effect of media on the

light rays is to be taken into account, we are led to studying gravitational

lensing in terms of ray-optical structures on Lorentzian manifolds, i.e., on

general-relativistic spacetimes. In the following we discuss, within such a
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differential-geometrical setting, the relevance of Fermat's principle for gravi-
tational lensing. Later we specify to the stationary case.

To that end we consider the following situation. In a 4-dimensional

Lorentzian manifold (M, g), to be interpreted as a general-relativistic space-

time, we fix a point q E M and a time-like COO embedding 'Y: I ) M

from a real interval I into M. We interpret q as an event where an observa-

tion takes place, and we interpret -y as the worldline of a light source. The

parametrization of -y could be proper time, g ( ,  ) = -1, but any other

smooth parametrization would do as well. We interpret the parametrization
of -y as past-pointing, as indicated by the arrow in Figure 8.8.

q

M

Fig. 8.8. In a gravitational lensing situation there are several light rays from a

light source y to an observer q.

We fix a ray-optical structure Ar on M, thereby specifying the properties
of the optical medium in which light propagation is to be considered. To

avoid pathologies we assume that Ar is causal in the sense of Definition 6.1.1.

Then each light ray, emitted from the light source -Y into the future and

received by the observer at q, corresponds to a ray A: [0, 1] ) M of the

ray-optical structure JV with A(O) = q and A(1) = -y(T(A)), where T(A)
denotes some parameter value, with the non-space-like vector  (1) pointing
into the same half of the null cone bundle as the time-like vector  (T(A)),
i.e., g( (T(A),  (I)) < 0. If there is more than one such ray, then we are

in a gravitational lensing situation, see Figure 8.8. (Here it goes without
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saying that two rays are identified if one is a reparametrization of the other.)
There might be a finite or infinite number of denumerable, rays, or a whole

continuum, e.g., a one-parameter family. In the latter case the observer might

see an extended image, such as an arc or a ring, of the pointlike source -1.

(a) The (non-stationary) vacuum case

In the case of vacuum light propagation, M = Mg, the rays are the light-like

geodesics of the spacetime metric g. We can then use Fermat's principle in

the version of Theorem 7.3.2 to characterize the rays between q and 'Y -
For the

trial curves we have to consider all virtual rays, i.e., all light-like C1 curves

A: [0, 1] ) M with A(O) = q, A(1) = -y(T(A)) and g ( (T(A)),  (I)) < 0
-

By Theorem 7.3.2, such a trial curve is a ray if and only if it makes the arrival

time functional T stationary; here the arrival time functional T is defined by

the equation A(1) = 7(T(A)). If there are at least two stationary points A,

and A2 of the arrival time functional, with /\2 not just a reparametrization of

A,, then we are in a gravitational lensing situation.

This version of Fermat's principle has the advantage that it applies to

time-dependent gravitational fields. E.g., it can be used to calculate the in-

fluence of a gravitational wave sweeping over a gravitational lensing situation.

Calculations of this kind have been carried through by Kovner [741 and by

Faraoni [42].
If there is a continuous one-parameter family of light rays connecting q

and y, then along any ray of this family the end-point must be conjugate

to the initial point in the sense of Definition 5.6.3. For a proof it suffices to

observe that a finite portion of the timlike curve 7 cannot be contained in the

vacuum light cone which is made up by the light-like geodesics issuing from

q. In this sense, in a vacuum gravitational lensing situation all parts of an

extended image, such as a ring or an arc, show the light source at the same

age. This is not necessarily true in a medium.

(b) The (non-stationary) matter case

For light propagation in matter, Ar :A AP, we have to use Fermat's principle in

the more general version of Theorem 7.3.1. If we want to allow for dispersive

media, we have to choose a generalized observer field W in the sense of

Definition 7.3.1 and we have to choose a frequency constant W,, E R. For

the trial curves we have to consider all curves  E 9R(A(, q,,y, W, w,,), in

the sense of Definition 7.3.2, further restricted by the additional assumption

g( (T(A)), (1)) < 0. By Theorem 7.3.1, such a trial curve  is a lifted

ray if and only if it makes the generalized optical path length functional F

stationary, provided that the regularity condition (7.12) is satisfied along  

for one and, thus, for any Hamiltonian H of Ar. In comparison to the vacuum

case, two observations are to be emphasized. First, it is necessary to consider

trial curves in T*M rather than in M. Second, the variational principle will

give us only the light rays for a specific value of the frequency constant W,,.

Please note that w,, fixes the frequency with which the respective light ray
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is emitted by -y and that w,, is given in usual physical units only if -Y is

parametrized by proper time.

This variational principle can be applied to gravitational lensing in time-

dependent gravitational fields and in time-dependent media. As an example,
we consider a non-magnetized plasma, i.e., a ray-optical structure N given
by a Hamiltonian of the form (8.42) on an arbitrary Lorentzian spacetime
manifold (M,g) with an arbitrary spacetime function wp. The trial curves

 E M(A(, q, y, W, w,) are characterized, in terms of their representations
(x(s),p(s)) in a natural chart, by the equations (5.10), (5.11), and (7.10),
i.e.,

9ab (XW) Pa(S) Pb (S) = _WP(X(S))2 , (8.67)

,ba(,) = k(s) gab (X(8)) Pb (8) 1 (8.68)

Wa(S) Pa (S) = (8.69)

-k(s) Wa(S)
1 agcd (X(8))

Pa (S) Pb (8) + Wp (X(S))
aWP (X(s))

2 gxa IgXa

supplemented with the boundary conditions that Xa (0) are the fixed coordi-

nates of q, Xa (1) are coordinates of a point on -f, and Wa(1) pa (1) = -W,,.

In addition, we have to restrict to curves with gab Wa(1) &b (1) < 0. If WP
has no zeros, (8.67) and (8.68) imply that the projected curves A = -r.; o  
are time-like for every  E 9R(M, q, -y, W, w,,). Moreover, it is easy to check

that the relation between  and A is one-to-one. The projected trial curves

X are characterized, in terms of their coordinate representations x(s), by the

differential equation

Wa ( Wp(X) gab (X)., b ) - (8.70)
A/-gfh(X) &f  bh

-Wa
1 9gcd(X) WPW gceW &e gdb(X) :tb

&f &h(2 '9Xa Al-9fh(X); f :jh
+ VF-gfh(X)

(9Xa ) I

supplemented with the boundary conditions that Xa(0) are the coordinates

of q, x(l) are coordinates of a point on -y, and

(Wc'g(,b(X)  bb
-

WPW
(1) (8.71)

V/ gfhW

(8.70) and (8.71) fix the pseudo-Euclidean angle between the (projected) trial

curve and W. The generalized optical path length, which was introduced in
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Definition 7.3.3 as a functional reduces to a functional on the

projected curves, A i ) F(A), given by

F(A) = -

1
WP(AW) ds + T(A) (8.72)fo WO

VC9 (A(s), W)
Thus, the light rays emitted on -y with the frequency wo are the extremals of

the functional (8.72) among all curves A between q and -y whose coordinate

representations s i ) x(s) satisfy (8.70) and (8.71). Please note that F re-

duces to the arrival time functional T in the limit wp --> 0, but that (8.70)
and (8.71) cannot be used in this limit since they contain undetermined ex-

pressions of the form 0/0. For this reason, a somewhat inconvenient matching

procedure must be used if regions with wp = 0 and regions with wp 54 0 are

to be treated in a unified setting.

(c) The stationary case

Now we want to consider the situation that JV is a stationary ray-optical

structure and that -1 is an integral curve of the distinguished time-like vector

field W E gAr, i.e., that the light source is at rest with respect to this time-like

vector field. Moreover, we shall assume that the assumptions of the reduc-

tion theorem (i.e., of Theorem 6.5.1) are satisfied. The gravitational lensing

situation can then be described in terms of space rather than in terms of

spacetime, viz., in terms of the reduced ray-optical structure. If the reduced

ray-optical structure is strongly regular (which is true in virtually all situa,

tions of physical interest in which the preceding assumptions are valid), the

Morse theory developed in Sect. 7.5 can be applied.
We want to illustrate the general features of this approach by way of

example. To that end we consider, on a 4-dimensional Lorentzian spacetime

manifold (M, g), a ray-optical structure Ar determined by a Hamiltonian of

the form (8.42), i.e., a dispersion relation of the form

9abW PaA + WP(X)2 = 0 (8.73)

which describes light propagation in a non-magnetized plasma. Here gab are

the contravariant components of the spacetime metric and W,, is the plasma

frequency. The spacetime metric is supposed to describe a cosmological model

with some local mass concentrations that act as "deflectors"; the light rays

are supposed to be influenced by some plasma clouds, situated in regions

where the function w,, is different from zero.

We want to assume that Ar is stationary, i.e., that there is a time-like

vector field W in the symmetry algebra 9,V. This means that W must be a

conformal Killing field of the spacetime metric g,

Lw (e-2fg) = 0 (8.74)

where f = -!In( - g(W, W)), and that the rescaled plasma density must be
2

constant along each integral curve of W,
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Lw (e-fwp) = 0. (8.75)

These assumptions are satisfied, e.g., if there is an open subset V in M,
invariant under the flow of W, with the following properties. (M,g) is a

Robertson-Walker spacetime without plasma (wp = 0) on M \  , whereas it

is a stationary spacetime with a stationary plasma (Lwg = 0 and Lwwp = 0)
on D. D is to be interpreted as the region where the influence of the deflector

mass and of the plasma cloud on the light rays is to be taken into account.

Instead of a Robertson-Walker spacetime we could use any other conformally
stationary cosmological background on M \  -

To apply the reduction theorem, we have to assume that there is a global
timing function t : M ) R for W which gives us a global diffeomorphism
(7r, t) : M ) X4' x R, please recall Figure 6.3. To construct the reduced ray-

optical structure according to Theorem 6.5.1, we choose a frequency constant

w,, > 0. Rom (8.73) we read that rays with p,,W' = -w,, cannot leave the

region

e-2f(q)M,,,, = {q E M wp(q)2 < W
2

(8.76)0

If we restrict to this region, all assumptions of Theorem 6.5.1 are satisfied

and the reduction can be carried through, giving us a reduced ray-optical
structure on the 3-dimensional space M,,,, = M,,.I-. In the vacuum

case w,, = 0 we have, of course, M,,. = M for all wo > 0, otherwise it might
be necessary to excise some parts from spacetime where the plasma frequency
is so large that rays with frequency constant w, cannot enter. However, if the

function wl, has spatially compact support we always have M,". = M for

sufficiently large w,,.

With the results from Sect. 6.6 it is easy to find a Hamiltonian for the

reduced ray-optical structure First we recall that, by (8.74), the space-

time metric induces a positive definite metric and a one-form on M,
according to (6.98). The one-form vanishes if and only if W is orthogonal
to the hypersurfaces t = const. In coordinates with x

4
= t and al,9X4 = W

the spacetime metric takes the form (6.101). Moreover, (8.75) implies that

there is a function c4 R such that

e-fwp = -7r*c ,,. (8.77)

Hence, in coordinates with x' = t and 191aX4 = W the dispersion relation

(8.73) is equivalent to

2 +C 2 = 0 (8.78)k"'(Pl.i - P4 [t) (Po- - N a) - P4 P

with greek indices running from 1 to 3. According to the general rules found

in Sect. 6.5, the left-hand side of (8.78) gives us a Hamiltonian for the reduced

ray-optical structure if P4 is replaced with -w,,. Since we are always free to

multiply the Hamiltonian with a non-zero function, this implies that 9". is

generated by the Hamiltonian
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OAO, (PA + wo jl) (Pa + wo a)
(8.79)2

- C 22 WO P

To study gravitational lensing we fix two points 4 and d' in A G. and we

ask how many rays of 9,,. go from 4 to 4'. It is easy to check that for the

Hamiltonian (8.79) the map af, X R ) TM^,,. is a global diffeomor-

phism onto its image, i.e., that is strongly hyperregular according to

Definition 5.2.2. Thus, the Morse theory developed in Sect. 7.5 applies. For

the Hamiltonian (8.79), the space of trial curves 93(k, 4, d') is equal to the

set of all H2 curves, defined on the interval [0, 1], in A G. from 4 to 4' with

(W2 _ C 2)
0 P

:ia = const. (8.80)

and the action functional is given by

wo  o -

z,2
ds (8.81)

A

10
A

2QO, 3).for each X E 934,q, with coordinate representation x E H 1], R Please

note that, up to the factor wo > 0, the action functional (8.81) equals the
A

optical path length (6.84) of the lifted ray  associated with the ray A. In the

vacuum case c p = 0, the optical path length can be reinterpreted as a travel

time according to Proposition 6.5.3.

According to Fermat's principle in the version of Theorem 7.5.1, the light

rays from 4 to d' are the stationary points of the action functional (8.81) or,

equivalently, of the optical path length functional. In the static (i.e., non-

rotating) case we can choose the timing function in such a way that  = 0.

Then the optical path length functional is equal to the length functional of

the frequency-dependent metric

0= (1-" (8.82) :i

Please note that in the rotating case the optical path length functional is

not invariant under orientation-reversing reparameterizations. Hence, in that

case a light ray from 4 to 4' does not travel along the same path as a light

ray from d' to 4.

Since, for the Hamiltonian (8.79), the matrix

,92fl
) = 0tta)

(8.83)(9P,4,9PO, W2 - W2
0 P

is positive definite on the Morse index theorem in the version of Theo-

rem 7.5.4 implies that along each ray the extended Morse index is equal to the

number of conjugate points counted with multiplicity, see (7.56). In particu-

lar, a ray gives a strict local minimum of the optical path length functional
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if and only if it is free of conjugate points whereas it gives a saddle-point
if there is a conjugate point in the interior. Since at each conjugate point
neighboring light rays are crossing from one side to the other, an odd Morse

index is associated with a side-reversed image in comparison to an even Morse

index. This is observable for light sources surrounded by irregular structures,

e.g., for quasars with jets or lobes.

For the vacuum rays it is known that the occurence of conjugate points
gives rise to multiple imaging situation. Under certain assumptions on the

causal and topological structure of spacetime, the converse is also true, i.e.,
in any multiple imaging situation at least one of the rays must contain a

pair of conjugate points. For a general proof of these facts we refer to Perlick

[111]. This is an interesting result since, in combination with Einstein's field

equation, the existence of conjugate points along a vacuum light ray allows

to estimate the matter density along the ray, see Padmanabhan and Sub-

ramanian [102]. The above-mentioned Morse index theorem might be useful

for generalizing this result to the case of light rays in media, at least for

stationary situations and for media which satisfy the positive-definiteness

assumption of Theorem 7.5.4.

Finally we want to prove an odd number theorem, i.e., we want to show

that, under certain reasonable assumptions, a transparent deflector always
produces an odd number of images. To that end we generalize a differential-

topological argument, first published by McKenzie [95], into our setting of

stationary ray-optical structures. For the sake of comparison the reader is ref-

ered to Dyer and Roeder [33] who prove an odd number theorem for spherical

deflectors, and to Burke [24] and Petters [113] where odd number theorems

are given for thin deflectors and weak gravitational fields. An argument very

similar to Burke's but under slightly more general assumptions was worked

out by Lombardi [86]. A general discussion of odd number theorems can also

be found in Schneider, Ehlers, and Falco [128].
The following argument applies to all situations in which the assumptions

of the reduction theorem (i.e., of Theorem 6.5.1) are satisfied. As before, we

fix two points 4 and 4' in M,,. and we ask how many rays of 9,,. go from 4
to 4'. We need the following three additional assumptions (see Figure 8.9).

(a) There is an open subset B in M,,. with the following properties. 4 E B

and 1 is contractible to 4, i.e., there is differentiable map  P : [0, 1] x 1

with (P(O, and  P(1, for all  E 8. The closure of
A

is compact in M,,,. The boundary S = W of B is diffeomorphic to a

2-sphere and d' E S.

(b) Every ray of 9,,,, issuing from 4 intersects if sufficiently extended.
0

^

(c) Every vector in TqM,,. is the tangent vector of a ray of and this

ray is unique up to extension and reparametrization.

In physical terms, conditions (a) and (b) prohibit non-transparent deflectors.

Such a non-transparent deflector would to be modeled either as a hole in M,,.,
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Fig. 8.9. Under the assumptions stated in the text, the rays issuing from 4 define

a continuous map from the small sphere  . to the big sphere  . The degree of this

map must be equal to 1 which proves that there is an odd number of rays from

to 41.

thereby violating condition (a), or as a compact region in which some rays are

trapped, thereby violating (b). Condition (c), roughly speaking, makes sure

that in any spatial direction there is exactly one ray of This condition

is satisfied, e.g., if M is the vacuum ray-optical structure. Please note that

condition (c) could not hold if 9,,,, was not strongly regular. In the dispersive

case, conditions (a), (b), and (c) have, of course, to be checked for each value

of the frequency constant w,, individually.
Under these assumptions, every ray issuing from 4 intersects an infinites-

imally small sphere  ,, around 4 in exactly one point  , and it reaches the
A

sphere S at some point f ( ). This defines a differentiable map f : S,, )S.

We now fix a regular value of f, i.e., we fix a laoint 6 E  such that for all

f E S,, with f 6 the tangent map Tff : TfS,, Tf(f) S,, is a bijection.
Please note that, according to the well known Sard.Theorem (see, e.g., Abra-

ham and Robbin [2], p. 37) almost all points in S are regular values of f.

Clearly, 6 is a regular value of f if and only if 6 is not conjugate to 4 along

any ray in 8. With a regular value 6 chosen we define the degree of f as

deg(f) = E sgn( ) (8.84)
fM=6

where sgn( ) is equal to +1 if the differential Tpf is orientation preserving
and equal to -1 otherwise. Here we refer, of course, to the orientations of

the spheres according to which 4 "lies to their inner sides". It is a standard
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theorem in differential topology that deg(f) is well-defined, i.e., independent
of the choice of 6, see, e.g., Guillemin and Pollack [54] for a detailed discussion.

Moreover, our assumption of B beingcontractible to 4 gives an orientation

preserving diffeomorphism from  to S,, and a smooth deformation of f into

the identity, i.e., it implies that f is homotopic to the identity map. As it

is well known that, for maps between compact manifolds without boundary,
the degree is a homotopic: invariant, the degree of f must be the degree of

the identity, i.e., deg(f) = 1.

We now consider the rays from 4 to 4'. We exclude the exceptional case

that d' is conjugate to 4 along some ray, Le, we assume that 4' is a regular
value of f. Then the definition of the degree implies that

deg(f) = n+ - n- (8.85)

where n is the number of rays from 4 to 4' in 8 such that sgn( ) = 1.

Here f denotes the intersection of the ray with S,,. Clearly, n+ is the number

of rays with an even number of conjugate points and n- is the number of

rays with an odd number of conjugate points. As the degree of f is equal to

1, (8.85) implies that n+ + n- = I + 2n-, i.e., the number of rays from 4 to

is odd.

For this argument stationarity was, of course, essential since otherwise

there is no space M,,,, in which it could be applied. Even for vacuum rays it is

hard to see how a similar degree argument could give an odd number theorem

in a spacetime setting, i.e., without assuming stationarity. (This problem

was discussed in detail by Gottlieb [51].) For that reason it is important
to know that McKenzie [95] was able to give another argument to prove

that a transparent deflector produces an odd number of images. This was

done for vacuum light rays in a globally hyperbolic spacetime, using Morse

theoretical results of Uhlenbeck [144]. Unfortunately, it was necessary for

McKenzie to impose some additional assumptions on the spacetime metric the

physical meaning of which is obscure. Therefore it seems fair to say that in the

non-stationary case a satisfactory odd number theorem is still missing, even

for vacuum rays. Infinite dimensional Morse theory, as it was developed for

vacuum rays between a point and a time-like curve in a Lorentzian manifold

partially by Perlick [110] and, to a fuller extent, by Giannoni, Masiello, and

Piccione [47] [481, could be a useful tool. In the non-stationary non-vacuum

case, there are not even rudiments of a Morse theory for light rays between

a point and a time-like curve. So there is still a lot to be done in the future.
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